Package 'raveio'

Title: File-System Toolbox for RAVE Project
Description: Includes multiple cross-platform read/write interfaces for 'RAVE' project. 'RAVE' stands for "R analysis and visualization of human intracranial electroencephalography data". The whole project aims at providing powerful free-source package that analyze brain recordings from patients with electrodes placed on the cortical surface or inserted into the brain. 'raveio' as part of this project provides tools to read/write neurophysiology data from/to 'RAVE' file structure, as well as several popular formats including 'EDF(+)', 'Matlab', 'BIDS-iEEG', and 'HDF5', etc. Documentation and examples about 'RAVE' project are provided at <https://rave.wiki>, and the paper by John F. Magnotti, Zhengjia Wang, Michael S. Beauchamp (2020) <doi:10.1016/j.neuroimage.2020.117341>. For applications such as electrode localization, please check Zhengjia Wang, John F. Magnotti, Xiang Zhang, Michael S. Beauchamp (2023) <doi:10.1523/ENEURO.0328-23.2023>, or see 'citation("raveio")' for details.
Authors: Zhengjia Wang [aut, cre, cph], John Magnotti [aut], Michael Beauchamp [aut], University of Pennsylvania [cph]
Maintainer: Zhengjia Wang <[email protected]>
License: MIT + file LICENSE
Version: 0.9.0.81
Built: 2024-12-20 18:26:52 UTC
Source: https://github.com/beauchamplab/raveio

Help Index


Register 'CT' or 'MR' images via 'ANTs'

Description

ants_coreg aligns 'CT' to 'MR' images; ants_mri_to_template aligns native 'MR' images to group templates

Usage

ants_coreg(
  ct_path,
  mri_path,
  coreg_path = NULL,
  reg_type = c("DenseRigid", "Rigid", "SyN", "Affine", "TRSAA", "SyNCC", "SyNOnly"),
  aff_metric = c("mattes", "meansquares", "GC"),
  syn_metric = c("mattes", "meansquares", "demons", "CC"),
  verbose = TRUE,
  ...
)

cmd_run_ants_coreg(
  subject,
  ct_path,
  mri_path,
  reg_type = c("DenseRigid", "Rigid", "SyN", "Affine", "TRSAA", "SyNCC", "SyNOnly"),
  aff_metric = c("mattes", "meansquares", "GC"),
  syn_metric = c("mattes", "meansquares", "demons", "CC"),
  verbose = TRUE,
  dry_run = FALSE
)

ants_mri_to_template(
  subject,
  template_subject = getOption("threeBrain.template_subject", "N27"),
  preview = FALSE,
  verbose = TRUE,
  ...
)

cmd_run_ants_mri_to_template(
  subject,
  template_subject = getOption("threeBrain.template_subject", "N27"),
  verbose = TRUE,
  dry_run = FALSE
)

ants_morph_electrode(subject, preview = FALSE, dry_run = FALSE)

Arguments

ct_path, mri_path

absolute paths to 'CT' and 'MR' image files

coreg_path

registration path, where to save results; default is the parent folder of ct_path

reg_type

registration type, choices are 'DenseRigid', 'Rigid', 'Affine', 'SyN', 'TRSAA', 'SyNCC', 'SyNOnly', or other types; see ants_registration

aff_metric

cost function to use for linear or 'affine' transform

syn_metric

cost function to use for 'SyN' transform

verbose

whether to verbose command; default is true

...

other arguments passed to ants_registration

subject

'RAVE' subject

dry_run

whether to dry-run the script and to print out the command instead of executing the code; default is false

template_subject

template to map 'MR' images

preview

whether to preview results; default is false

Value

Aligned 'CT' will be generated at the coreg_path path:

'ct_in_t1.nii.gz'

aligned 'CT' image; the image is also re-sampled into 'MRI' space

'transform.yaml'

transform settings and outputs

'CT_IJK_to_MR_RAS.txt'

transform matrix from volume 'IJK' space in the original 'CT' to the 'RAS' anatomical coordinate in 'MR' scanner; 'affine' transforms only

'CT_RAS_to_MR_RAS.txt'

transform matrix from scanner 'RAS' space in the original 'CT' to 'RAS' in 'MR' scanner space; 'affine' transforms only


Process 'T1' weighted 'MRI' using 'ANTs'

Description

This function is soft-deprecated. Use yael_preprocess instead.

Usage

ants_preprocessing(
  work_path,
  image_path,
  resample = FALSE,
  verbose = TRUE,
  template_subject = raveio_getopt("threeBrain_template_subject")
)

Arguments

work_path

working directory, all intermediate images will be stored here

image_path

input image path

resample

whether to resample the input image before processing

verbose

whether to verbose the processing details

template_subject

template mapping, default is derived from raveio_getopt

Value

Nothing. All images are saved to work_path


Archive and share a subject

Description

Archive and share a subject

Usage

archive_subject(
  subject,
  path,
  includes = c("orignal_signals", "processed_data", "rave_imaging", "pipelines", "notes",
    "user_generated"),
  config = list(),
  work_path = NULL,
  zip_flags = NULL
)

Arguments

subject

'RAVE' subject to archive

path

path to a zip file to store; if missing or empty, then the path will be automatically created

includes

data to include in the archive; default includes all ( original raw signals, processed signals, imaging files, stored pipelines, notes, and user-generated exports)

config

a list of configurations, including changing subject code, project name, or to exclude cache data; see examples

work_path

temporary working path where files are copied; default is temporary path. Set this variable explicitly when temporary path is on external drives (for example, users have limited storage on local drives and cannot hold the entire subject)

zip_flags

zip flags

Examples

# This example requires you to install demo subject

## Not run: 


# Basic usage
path <- archive_subject('demo/DemoSubject')

# clean up
unlink(path)

# Advanced usage: include all the original signals
# and processed data, no cache data, re-name to
# demo/DemoSubjectLite
path <- archive_subject(
  'demo/DemoSubject',
  includes = c("orignal_signals", "processed_data"),
  config = list(
    rename = list(
      project_name = "demo",
      subject_code = "DemoSubjectLite"
    ),
    orignal_signals = list(
      # include all raw signals
      include_all = TRUE
    ),
    processed_data = list(
      include_cache = FALSE
    )
  )
)

# Clean up temporary zip file
unlink(path)


## End(Not run)

Convert character to RAVEProject instance

Description

Convert character to RAVEProject instance

Usage

as_rave_project(project, ...)

Arguments

project

character project name

...

passed to other methods

Value

A RAVEProject instance

See Also

RAVEProject


Get RAVESubject instance from character

Description

Get RAVESubject instance from character

Usage

as_rave_subject(subject_id, strict = TRUE, reload = TRUE)

Arguments

subject_id

character in format "project/subject"

strict

whether to check if subject directories exist or not

reload

whether to reload (update) subject information, default is true

Value

RAVESubject instance

See Also

RAVESubject


Convert numeric number into print-friendly format

Description

Convert numeric number into print-friendly format

Usage

as_rave_unit(x, unit, label = "")

Arguments

x

numeric or numeric vector

unit

the unit of x

label

prefix when printing x

Value

Still numeric, but print-friendly class

Examples

sp <- as_rave_unit(1024, 'GB', 'Hard-disk space is ')
print(sp, digits = 0)

sp - 12

as.character(sp)

as.numeric(sp)

# Vectorize
sp <- as_rave_unit(c(500,200), 'MB/s', c('Writing: ', 'Reading: '))
print(sp, digits = 0, collapse = '\n')

Create a 'YAEL' imaging processing instance

Description

Image registration across different modals. Normalize brain 'T1'-weighted 'MRI' to template brain and generate subject-level atlas files.

Usage

as_yael_process(subject)

Arguments

subject

character (subject code, or project name with subject code), or RAVESubject instance.

Value

A processing instance, see YAELProcess

Examples

library(raveio)
process <- as_yael_process("testtest2")

# This example requires extra demo data & settings.
## Not run: 

# Import and set original T1w MRI and CT
process$set_input_image("/path/to/T1w_MRI.nii", type = "T1w")
process$set_input_image("/path/to/CT.nii.gz", type = "CT")

# Co-register CT to MRI
process$register_to_T1w(image_type = "CT")

# Morph T1w MRI to 0.5 mm^3 MNI152 template
process$map_to_template(
  template_name = "mni_icbm152_nlin_asym_09b",
  native_type = "T1w"
)


## End(Not run)

Back up and rename the file or directory

Description

Back up and rename the file or directory

Usage

backup_file(path, remove = FALSE, quiet = FALSE)

Arguments

path

path to a file or a directory

remove

whether to remove the original path; default is false

quiet

whether not to verbose the messages; default is false

Value

FALSE if nothing to back up, or the back-up path if path exists

Examples

path <- tempfile()
file.create(path)

path2 <- backup_file(path, remove = TRUE)

file.exists(c(path, path2))
unlink(path2)

Class definition to load data from 'BlackRock' 'Micro-systems' files

Description

Currently only supports minimum file specification version 2.3. Please contact the package maintainer or 'RAVE' team if older specifications are needed

Value

absolute file path

absolute file paths

nothing

a data frame

a list of spike 'waveform' (without normalization)

a normalized numeric vector (analog signals with 'uV' as the unit)

Public fields

block

character, session block ID

Active bindings

base_path

absolute base path to the file

version

'NEV' specification version

electrode_table

electrode table

sample_rate_nev_timestamp

sample rate of 'NEV' data packet time-stamps

has_nsx

named vector of 'NSx' availability

recording_duration

recording duration of each 'NSx'

sample_rates

sampling frequencies of each 'NSx' file

Methods

Public methods


Method print()

print user-friendly messages

Usage
BlackrockFile$print()

Method new()

constructor

Usage
BlackrockFile$new(path, block, nev_data = TRUE)
Arguments
path

the path to 'BlackRock' file, can be with or without file extensions

block

session block ID; default is the file name

nev_data

whether to load comments and 'waveforms'


Method nev_path()

get 'NEV' file path

Usage
BlackrockFile$nev_path()

Method nsx_paths()

get 'NSx' file paths

Usage
BlackrockFile$nsx_paths(which = NULL)
Arguments
which

which signal file to get, or NULL to return all available paths, default is NULL; must be integers


Method refresh_data()

refresh and load 'NSx' data

Usage
BlackrockFile$refresh_data(force = FALSE, verbose = TRUE, nev_data = FALSE)
Arguments
force

whether to force reload data even if the data has been loaded and cached before

verbose

whether to print out messages when loading

nev_data

whether to refresh 'NEV' extended data; default is false


Method get_epoch()

get epoch table from the 'NEV' comment data packet

Usage
BlackrockFile$get_epoch()

Method get_waveform()

get 'waveform' of the spike data

Usage
BlackrockFile$get_waveform()

Method get_electrode()

get electrode data

Usage
BlackrockFile$get_electrode(electrode, nstype = NULL)
Arguments
electrode

integer, must be a length of one

nstype

which signal bank, for example, 'ns3', 'ns5'


Method clone()

The objects of this class are cloneable with this method.

Usage
BlackrockFile$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.


Manipulate cached data on the file systems

Description

Manipulate cached data on the file systems

Usage

cache_root(check = FALSE)

clear_cached_files(subject_code, quiet = FALSE)

Arguments

check

whether to ensure the cache root path

subject_code

subject code to remove; default is missing. If subject_code is provided, then only this subject-related cache files will be removed.

quiet

whether to suppress the message

Details

'RAVE' intensively uses cache files. If running on personal computers, the disk space might be filled up very quickly. These cache files are safe to remove if there is no 'RAVE' instance running. Function clear_cached_files is designed to remove these cache files. To run this function, please make sure that all 'RAVE' instances are shutdown.

Value

cache_root returns the root path that stores the 'RAVE' cache data; clear_cached_files returns nothing

Examples

cache_root()

Generate and automatically cache a file array

Description

Avoid repeating yourself

Usage

cache_to_filearray(
  fun,
  filebase,
  globals,
  dimension,
  type = "auto",
  partition_size = 1L,
  verbose = FALSE,
  ...
)

Arguments

fun

function that can be called with no mandatory arguments; the result should be in a matrix or an array

filebase

where to store the array

globals

names of variables such that any changes should trigger a new evaluation of fun. This argument is highly recommended to be set explicitly (with atomic variables) though the function automatically calculates the global variables

dimension

what is the supposed dimension, default is automatically calculated from array. If specified explicitly and the file array dimension is inconsistent, a new calculation will be triggered.

type

file array type, default is "auto"; can be explicitly specified; see filearray_create. Inconsistent type will trigger a new calculation.

partition_size

file array partition size; default is 1; set it to NA to generate it automatically. Notice inconsistent partition size will not trigger calculation if the key variables remain the same

verbose

whether to verbose debug information

...

passed to findGlobals

Examples

c <- 2
b <- list(d = matrix(1:9,3))
filebase <- tempfile()

f <- function() {
  message("New calculation")
  re <- c + b$d
  dimnames(re) <- list(A=1:3, B = 11:13)

  # `extra` attribute will be saved
  attr(re, "extra") <- "extra meta data"
  re
}

# first time running
arr <- cache_to_filearray( f, filebase = filebase )

# cached, no re-run
arr <- cache_to_filearray( f, filebase = filebase )

# file array object
arr

# read into memory
arr[]

# read extra data
arr$get_header("extra")

# get digest results
arr$get_header("raveio::filearray_cache")

## Clean up this example
unlink(filebase, recursive = TRUE)

Print colored messages

Description

Print colored messages

Usage

catgl(..., .envir = parent.frame(), level = "DEBUG", .pal, .capture = FALSE)

Arguments

..., .envir

passed to glue

level

passed to cat2

.pal

see pal in cat2

.capture

logical, whether to capture message and return it without printing

Details

The level has order that sorted from low to high: "DEBUG", "DEFAULT", "INFO", "WARNING", "ERROR", "FATAL". Each different level will display different colors and icons before the message. You can suppress messages with certain levels by setting 'raveio' options via raveio_setopt('verbose_level', <level>). Messages with levels lower than the threshold will be muffled. See examples.

Value

The message as characters

Examples

# ------------------ Basic Styles ---------------------

# Temporarily change verbose level for example
raveio_setopt('verbose_level', 'DEBUG', FALSE)

# debug
catgl('Debug message', level = 'DEBUG')

# default
catgl('Default message', level = 'DEFAULT')

# info
catgl('Info message', level = 'INFO')

# warning
catgl('Warning message', level = 'WARNING')

# error
catgl('Error message', level = 'ERROR')

try({
  # fatal, will call stop and raise error
  catgl('Error message', level = 'FATAL')
}, silent = TRUE)

# ------------------ Muffle messages ---------------------

# Temporarily change verbose level to 'WARNING'
raveio_setopt('verbose_level', 'WARNING', FALSE)

# default, muffled
catgl('Default message')

# message printed for level >= Warning
catgl('Default message', level = 'WARNING')
catgl('Default message', level = 'ERROR')

External shell commands for 'RAVE'

Description

These shell commands are for importing 'DICOM' images to 'Nifti' format, reconstructing cortical surfaces, and align' the CT' to 'MRI'. The commands are only tested on 'MacOS' and 'Linux'. On 'Windows' machines, please use the 'WSL2' system.

Usage

cmd_run_3dAllineate(
  subject,
  mri_path,
  ct_path,
  overwrite = FALSE,
  command_path = NULL,
  dry_run = FALSE,
  verbose = dry_run
)

cmd_execute(
  script,
  script_path,
  command = "bash",
  dry_run = FALSE,
  backup = TRUE,
  args = NULL,
  ...
)

cmd_run_r(
  expr,
  quoted = FALSE,
  verbose = TRUE,
  dry_run = FALSE,
  log_file = tempfile(),
  script_path = tempfile(),
  ...
)

cmd_run_dcm2niix(
  subject,
  src_path,
  type = c("MRI", "CT"),
  merge = c("Auto", "No", "Yes"),
  float = c("Yes", "No"),
  crop = c("No", "Yes", "Ignore"),
  overwrite = FALSE,
  command_path = NULL,
  dry_run = FALSE,
  verbose = dry_run
)

cmd_run_flirt(
  subject,
  mri_path,
  ct_path,
  dof = 6,
  cost = c("mutualinfo", "leastsq", "normcorr", "corratio", "normmi", "labeldiff", "bbr"),
  search = 90,
  searchcost = c("mutualinfo", "leastsq", "normcorr", "corratio", "normmi", "labeldiff",
    "bbr"),
  overwrite = FALSE,
  command_path = NULL,
  dry_run = FALSE,
  verbose = dry_run
)

cmd_run_recon_all(
  subject,
  mri_path,
  args = c("-all", "-autorecon1", "-autorecon2", "-autorecon3", "-autorecon2-cp",
    "-autorecon2-wm", "-autorecon2-pial"),
  work_path = NULL,
  overwrite = FALSE,
  command_path = NULL,
  dry_run = FALSE,
  verbose = dry_run
)

cmd_run_recon_all_clinical(
  subject,
  mri_path,
  work_path = NULL,
  overwrite = FALSE,
  command_path = NULL,
  dry_run = FALSE,
  verbose = dry_run,
  ...
)

Arguments

subject

characters or a RAVESubject instance

mri_path

the absolute to 'MRI' volume; must in 'Nifti' format

ct_path

the absolute to 'CT' volume; must in 'Nifti' format

overwrite

whether to overwrite existing files; default is false

command_path

command line path if 'RAVE' cannot find the command binary files

dry_run

whether to run in dry-run mode; under such mode, the shell command will not execute. This is useful for debugging scripts; default is false

verbose

whether to print out the command script; default is true under dry-run mode, and false otherwise

script

the shell script

script_path

path to run the script

command

which command to invoke; default is 'bash'

backup

whether to back up the script file immediately; default is true

args

further arguments in the shell command, especially the 'FreeSurfer' reconstruction command

...

passed to system2, or additional arguments

expr

expression to run as command

quoted

whether expr is quoted; default is false

log_file

where should log file be stored

src_path

source of the 'DICOM' or 'Nifti' image (absolute path)

type

type of the 'DICOM' or 'Nifti' image; choices are 'MRI' and 'CT'

merge, float, crop

'dcm2niix' conversion arguments; ignored when the source is in 'Nifti' format

dof, cost, search, searchcost

parameters used by 'FSL' 'flirt' command; see their documentation for details

work_path

work path for 'FreeSurfer' command;

Value

A list of data containing the script details:

script

script details

script_path

where the script should/will be saved

dry_run

whether dry-run mode is turned on

log_file

path to the log file

execute

a function to execute the script


Process brain images for 'YAEL'

Description

Aligns 'T1w' with other image types; normalizes 'T1w' 'MRI' to 'MNI152' templates via symmetric non-linear morphs. Create brain custom atlases from templates.

Usage

cmd_run_yael_preprocess(
  subject_code,
  t1w_path = NULL,
  ct_path = NULL,
  t2w_path = NULL,
  fgatir_path = NULL,
  preopct_path = NULL,
  flair_path = NULL,
  t1w_contrast_path = NULL,
  register_reversed = FALSE,
  normalize_template = c("mni_icbm152_nlin_asym_09a", "mni_icbm152_nlin_asym_09c"),
  run_recon_all = TRUE,
  dry_run = FALSE,
  verbose = TRUE
)

yael_preprocess(
  subject_code,
  t1w_path = NULL,
  ct_path = NULL,
  t2w_path = NULL,
  fgatir_path = NULL,
  preopct_path = NULL,
  flair_path = NULL,
  t1w_contrast_path = NULL,
  register_policy = c("auto", "all"),
  register_reversed = FALSE,
  normalize_template = "mni_icbm152_nlin_asym_09a",
  normalize_policy = c("auto", "all"),
  normalize_back = ifelse(length(normalize_template) >= 1, normalize_template[[1]], NA),
  atlases = list(),
  add_surfaces = FALSE,
  verbose = TRUE
)

Arguments

subject_code

'RAVE' subject code

t1w_path

(required) 'T1' weighted 'MRI' path

ct_path

(optional in general but mandatory for electrode localization) post-surgery 'CT' path

t2w_path

(optional) 'T2' weighted 'MRI' path

fgatir_path

(optional) 'fGATIR' (fast gray-matter acquisition 'T1' inversion recovery) image path

preopct_path

(optional) pre-surgery 'CT' path

flair_path

(optional) 'FLAIR' (fluid-attenuated inversion recovery) image path

t1w_contrast_path

(optional) 'T1' weighted 'MRI' with contrast (usually used to show the blood vessels)

register_reversed

direction of the registration; FALSE (default) registers other images (such as post-surgery 'CT' to 'T1'); set to FALSE if you would like the 'T1' to be registered into other images. Since 'YAEL' does not re-sample the images, there is no essential difference on the final registration results

normalize_template

names of the templates which the native 'T1' images will be normalized into

run_recon_all

whether to run 'FreeSurfer' reconstruction; default is true

dry_run

whether to dry-run the script and check if error exists before actually execute the scripts.

verbose

whether to print out the progress; default is TRUE

register_policy

whether images should be registered with 'T1w' image; default is "auto": automatically run registration algorithm if missing; alternative is "all": force the registration algorithm even if mapping files exist

normalize_policy

normalization policy; similar to register_policy but is applied to normalization. Default is "auto": automatically run normalization when the mapping is missing, and skip if exists; alternative is "all": force to run the normalization.

normalize_back

length of one (select from normalize_template), which template is to be used to generate native brain mask and transform matrices

atlases

a named list: the names must be template names from normalize_template and the values must be directories of atlases of the corresponding templates (see 'Examples').

add_surfaces

Whether to add surfaces for the subject; default is FALSE. The surfaces are created by reversing the normalization from template brain, hence the results will not be accurate. Enable this option only if cortical surface estimation is not critical.

Value

Nothing, a subject imaging folder will be created under 'RAVE' raw folder

Examples

## Not run: 


# For T1 preprocessing only
yael_preprocess(
  subject_code = "patient01",
  t1w_path = "/path/to/T1.nii or T1.nii.gz",

  # normalize T1 to all 2009 MNI152-Asym brains (a,b,c)
  normalize_template = c(
    "mni_icbm152_nlin_asym_09a",
    "mni_icbm152_nlin_asym_09b",
    "mni_icbm152_nlin_asym_09c"
  ),

  # only normalize if not exists
  normalize_policy = "auto",

  # use MNI152b to create native processing folder
  normalize_back = "mni_icbm152_nlin_asym_09b",

  # Atlases generated from different templates have different
  # coordinates, hence both folder path and template names must be
  # provided
  atlases = list(
    mni_icbm152_nlin_asym_09b = "/path/to/atlas/folder1",
    mni_icbm152_nlin_asym_09c = "/path/to/atlas/folder2"
  )

)

# For T1 and postop CT coregistration only
yael_preprocess(
  subject_code = "patient01",
  t1w_path = "/path/to/T1.nii or T1.nii.gz",
  ct_path = "/path/to/CT.nii or CT.nii.gz",

  # No normalization
  normalize_template = NULL,
  normalize_back = NA

)

# For both T1 and postop CT coregistration and T1 normalization
yael_preprocess(
  subject_code = "patient01",
  t1w_path = "/path/to/T1.nii or T1.nii.gz",
  ct_path = "/path/to/CT.nii or CT.nii.gz",

  normalize_template = c(
    "mni_icbm152_nlin_asym_09a",
    "mni_icbm152_nlin_asym_09b",
    "mni_icbm152_nlin_asym_09c"
  ),

  normalize_policy = "auto",

  normalize_back = "mni_icbm152_nlin_asym_09b",

  atlases = list(
    mni_icbm152_nlin_asym_09b = "/path/to/atlas/folder1",
    mni_icbm152_nlin_asym_09c = "/path/to/atlas/folder2"
  )

)



## End(Not run)

Collapse power array with given analysis cubes

Description

Collapse power array with given analysis cubes

Usage

collapse_power(x, analysis_index_cubes)

## S3 method for class 'array'
collapse_power(x, analysis_index_cubes)

## S3 method for class 'FileArray'
collapse_power(x, analysis_index_cubes)

Arguments

x

a FileArray-class array, must have 4 modes in the following sequence Frequency, Time, Trial, and Electrode

analysis_index_cubes

a list of analysis indices for each mode

Value

a list of collapsed (mean) results

freq_trial_elec

collapsed over time-points

freq_time_elec

collapsed over trials

time_trial_elec

collapsed over frequencies

freq_time

collapsed over trials and electrodes

freq_elec

collapsed over trials and time-points

freq_trial

collapsed over time-points and electrodes

time_trial

collapsed over frequencies and electrodes

time_elec

collapsed over frequencies and trials

trial_elec

collapsed over frequencies and time-points

freq

power per frequency, averaged over other modes

time

power per time-point, averaged over other modes

trial

power per trial, averaged over other modes

Examples

if(!is_on_cran()) {

# Generate a 4-mode tensor array
x <- filearray::filearray_create(
  tempfile(), dimension = c(16, 100, 20, 5),
  partition_size = 1
)
x[] <- rnorm(160000)
dnames <- list(
  Frequency = 1:16,
  Time = seq(0, 1, length.out = 100),
  Trial = 1:20,
  Electrode = 1:5
)
dimnames(x) <- dnames

# Collapse array
results <- collapse_power(x, list(
  overall = list(),
  A = list(Trial = 1:5, Frequency = 1:6),
  B = list(Trial = 6:10, Time = 1:50)
))

# Plot power over frequency and time
groupB_result <- results$B


image(t(groupB_result$freq_time),
      x = dnames$Time[groupB_result$cube_index$Time],
      y = dnames$Frequency[groupB_result$cube_index$Frequency],
      xlab = "Time (s)",
      ylab = "Frequency (Hz)",
      xlim = range(dnames$Time))

x$delete(force = TRUE)


}

Collapse high-dimensional tensor array

Description

Collapse high-dimensional tensor array

Usage

collapse2(x, keep, method = c("mean", "sum"), ...)

## S3 method for class 'FileArray'
collapse2(x, keep, method = c("mean", "sum"), ...)

## S3 method for class 'Tensor'
collapse2(x, keep, method = c("mean", "sum"), ...)

## S3 method for class 'array'
collapse2(x, keep, method = c("mean", "sum"), ...)

Arguments

x

R array, FileArray-class, or Tensor object

keep

integer vector, the margins to keep

method

character, calculates mean or sum of the array when collapsing

...

passed to other methods

Value

A collapsed array (or a vector or matrix), depending on keep

See Also

collapse

Examples

x <- array(1:16, rep(2, 4))

collapse2(x, c(3, 2))

# Alternative method, but slower when `x` is a large array
apply(x, c(3, 2), mean)

# filearray
y <- filearray::as_filearray(x)

collapse2(y, c(3, 2))

collapse2(y, c(3, 2), "sum")

# clean up
y$delete(force = TRUE)

Compose a "phantom" channel from existing electrodes

Description

In some cases, for example, deep-brain stimulation ('DBS'), it is often needed to analyze averaged electrode channels from segmented 'DBS' leads, or create bipolar contrast between electrode channels, or to generate non-equally weighted channel averages for 'Laplacian' reference. compose_channel allows users to generate a phantom channel that does not physically exist, but is treated as a normal electrode channel in 'RAVE'.

Usage

compose_channel(
  subject,
  number,
  from,
  weights = rep(1/length(from), length(from)),
  normalize = FALSE,
  force = FALSE,
  label = sprintf("Composed-%s", number),
  signal_type = c("auto", "LFP", "Spike", "EKG", "Audio", "Photodiode", "Unknown")
)

Arguments

subject

'RAVE' subject

number

new channel number, must be positive integer, cannot be existing electrode channel numbers

from

a vector of electrode channels that is used to compose this new channel, must be non-empty; see weights if these channels are not equally weighted.

weights

numerical weights used on each from channels; the length of weights must equals to the length of from; default is equally weighted for each channel (mean of from channels).

normalize

whether to normalize the weights such that the composed channel has the same variance as from channels; default is false

force

whether to overwrite existing composed channel if it exists; default is false. By specifying force=TRUE, users are risking breaking the data integrity since any analysis based on the composed channel is no longer reproducible. Also users cannot overwrite original channels under any circumstances.

label

the label for the composed channel; will be stored at 'electrodes.csv'

signal_type

signal type of the composed channel; default is 'auto' (same as the first from channel); other choices see SIGNAL_TYPES

Value

Nothing

Examples

library(raveio)


# Make sure demo subject exists in this example, just want to make
# sure the example does not error out
if(
  interactive() && "demo" %in% get_projects() &&
  "DemoSubject" %in% as_rave_project('demo')$subjects() &&
  local({
    subject <- as_rave_subject("demo/DemoSubject")
    !100 %in% subject$electrodes
  })
) {

  # the actual example code:
  # new channel 100 = 2 x channel 14 - (channe 15 + 16)
  compose_channel(
    subject = "demo/DemoSubject",
    number = 100,
    from = c(14, 15, 16),
    weights = c(2, -1, -1),
    normalize = FALSE
  )

}

Convert 'BlackRock' 'NEV/NSx' files

Description

Convert 'BlackRock' 'NEV/NSx' files

Usage

convert_blackrock(
  file,
  block = NULL,
  subject = NULL,
  to = NULL,
  epoch = c("comment", "digital_inputs", "recording", "configuration", "log",
    "button_trigger", "tracking", "video_sync"),
  format = c("mat", "hdf5"),
  header_only = FALSE,
  ...
)

Arguments

file

path to any 'NEV/NSx' file

block

the block name, default is file name

subject

subject code to save the files; default is NULL

to

save to path, must be a directory; default is under the file path. If subject is provided, then the default is subject raw directory path

epoch

what type of events should be included in epoch file; default include comment, digital inputs, recording trigger, configuration change, log comment, button trigger, tracking, and video trigger.

format

output format, choices are 'mat' or 'hdf5'

header_only

whether just to generate channel and epoch table; default is false

...

ignored for enhanced backward compatibility

Value

The results will be stored in directory specified by to. Please read the output message carefully.


Convert electrode table

Description

Convert electrode table

Usage

convert_electrode_table_to_bids(
  subject,
  space = c("ScanRAS", "MNI305", "fsnative")
)

Arguments

subject

'RAVE' subject

space

suggested coordinate space, notice this argument might not be supported when 'FreeSurfer' reconstruction is missing.

Value

A list of table in data frame and a list of meta information


Convert 'fst' files to other formats

Description

'HDF5', 'csv' are common file formats that can be easily read into 'Matlab' or 'Python'

Usage

convert_fst_to_hdf5(fst_path, hdf5_path, exclude_names = NULL)

convert_fst_to_csv(fst_path, csv_path, exclude_names = NULL)

Arguments

fst_path

path to 'fst' file

hdf5_path

path to 'HDF5' file; if file exists before the conversion, the file will be erased first. Please make sure the files are backed up.

exclude_names

table names to exclude

csv_path

path to 'csv' file; if file exists before the conversion, the file will be erased first. Please make sure the files are backed up.

Value

convert_fst_to_hdf5 will return a list of data saved to 'HDF5'; convert_fst_to_csv returns the normalized 'csv' path.


Force creating directory with checks

Description

Force creating directory with checks

Usage

dir_create2(x, showWarnings = FALSE, recursive = TRUE, check = TRUE, ...)

Arguments

x

path to create

showWarnings, recursive, ...

passed to dir.create

check

whether to check the directory after creation

Value

Normalized path

Examples

path <- file.path(tempfile(), 'a', 'b', 'c')

# The following are equivalent
dir.create(path, showWarnings = FALSE, recursive = TRUE)

dir_create2(path)

'iEEG/ECoG' Tensor class inherit from Tensor

Description

Four-mode tensor (array) especially designed for 'iEEG/ECoG' data. The Dimension names are: Trial, Frequency, Time, and Electrode.

Value

a data frame with the dimension names as index columns and value_name as value column

an ECoGTensor instance

Super class

raveio::Tensor -> ECoGTensor

Methods

Public methods

Inherited methods

Method flatten()

converts tensor (array) to a table (data frame)

Usage
ECoGTensor$flatten(include_index = TRUE, value_name = "value")
Arguments
include_index

logical, whether to include dimension names

value_name

character, column name of the value


Method new()

constructor

Usage
ECoGTensor$new(
  data,
  dim,
  dimnames,
  varnames,
  hybrid = FALSE,
  swap_file = temp_tensor_file(),
  temporary = TRUE,
  multi_files = FALSE,
  use_index = TRUE,
  ...
)
Arguments
data

array or vector

dim

dimension of data, mush match with data

dimnames

list of dimension names, equal length as dim

varnames

names of dimnames, recommended names are: Trial, Frequency, Time, and Electrode

hybrid

whether to enable hybrid mode to reduce RAM usage

swap_file

if hybrid mode, where to store the data; default stores in raveio_getopt('tensor_temp_path')

temporary

whether to clean up the space when exiting R session

multi_files

logical, whether to use multiple files instead of one giant file to store data

use_index

logical, when multi_files is true, whether use index dimension as partition number

...

further passed to Tensor constructor

Author(s)

Zhengjia Wang


Export data frame to different common formats

Description

Stores and load data in various of data format. See 'Details' for limitations.

Usage

export_table(
  x,
  file,
  format = c("auto", "csv", "csv.zip", "h5", "fst", "json", "rds", "yaml"),
  ...
)

import_table(
  file,
  format = c("auto", "csv", "csv.zip", "h5", "fst", "json", "rds", "yaml"),
  ...
)

Arguments

x

data table to be saved to file

file

file to store the data

format

data storage format, default is 'auto' (infer from the file extension); other choices are 'csv', 'csv.zip', 'h5', 'fst', 'json', 'rds', 'yaml'

...

parameters passed to other functions

Details

The format 'rds', 'h5', 'fst', 'json', and 'yaml' try to preserve the first-level column attributes. Factors will be preserved in these formats. Such property does not exist in 'csv', 'csv.zip' formats.

Open-data formats are 'h5', 'csv', 'csv.zip', 'json', 'yaml'. These formats require the table elements to be native types (numeric, character, factor, etc.).

'rds', 'h5', and 'fst' can store large data sets. 'fst' is the best choice is performance and file size are the major concerns. 'rds' preserves all the properties of the table.

Value

The normalized path for export_table, and a data.table for import_table

Examples

x <- data.table::data.table(
  a = rnorm(10),
  b = letters[1:10],
  c = 1:10,
  d = factor(LETTERS[1:10])
)

f <- tempfile(fileext = ".csv.zip")

export_table(x = x, file = f)

y <- import_table(file = f)

str(x)
str(y)

# clean up
unlink(f)

Try to find path along the root directory

Description

Try to find path under root directory even if the original path is missing; see examples.

Usage

find_path(path, root_dir, all = FALSE)

Arguments

path

file path

root_dir

top directory of the search path

all

return all possible paths, default is false

Details

When file is missing, find_path concatenates the root directory and path combined to find the file. For example, if path is "a/b/c/d", the function first seek for existence of "a/b/c/d". If failed, then "b/c/d", and then "~/c/d" until reaching root directory. If all=TRUE, then all files/directories found along the search path will be returned

Value

The absolute path of file if exists, or NULL if missing/failed.

Examples

root <- tempdir()

# ------ Case 1: basic use case -------

# Create a path in root
dir_create2(file.path(root, 'a'))

# find path even it's missing. The search path will be
# root/ins/cd/a - missing
# root/cd/a     - missing
# root/a        - exists!
find_path('ins/cd/a', root)

# ------ Case 2: priority -------
# Create two paths in root
dir_create2(file.path(root, 'cc/a'))
dir_create2(file.path(root, 'a'))

# If two paths exist, return the first path found
# root/ins/cd/a - missing
# root/cd/a     - exists - returned
# root/a        - exists, but ignored
find_path('ins/cc/a', root)

# ------ Case 3: find all -------
# Create two paths in root
dir_create2(file.path(root, 'cc/a'))
dir_create2(file.path(root, 'a'))

# If two paths exist, return the first path found
# root/ins/cd/a - missing
# root/cd/a     - exists - returned
# root/a        - exists - returned
find_path('ins/cc/a', root, all = TRUE)

Generate common average reference signal for 'RAVE' subjects

Description

To properly run this function, please install ravetools package.

Usage

generate_reference(subject, electrodes)

Arguments

subject

subject ID or RAVESubject instance

electrodes

electrodes to calculate the common average; these electrodes must run through 'Wavelet' first

Details

The goal of generating common average signals is to capture the common movement from all the channels and remove them out from electrode signals.

The common average signals will be stored at subject reference directories. Two exact same copies will be stored: one in 'HDF5' format such that the data can be read universally by other programming languages; one in filearray format that can be read in R with super fast speed.

Value

A reference instance returned by new_reference with signal type determined automatically.


Get all possible projects in 'RAVE' directory

Description

Get all possible projects in 'RAVE' directory

Usage

get_projects(refresh = TRUE)

Arguments

refresh

whether to refresh the cache; default is true

Value

characters of project names


Get value or return default if invalid

Description

Get value or return default if invalid

Usage

get_val2(x, key = NA, default = NULL, na = FALSE, min_len = 1L, ...)

Arguments

x

a list, or environment, or just any R object

key

the name to obtain from x. If NA, then return x. Default is NA

default

default value if

na, min_len, ...

passed to is_valid_ish

Value

values of the keys or default is invalid

Examples

x <- list(a=1, b = NA, c = character(0))

# ------------------------ Basic usage ------------------------

# no key, returns x if x is valid
get_val2(x)

get_val2(x, 'a', default = 'invalid')



# get 'b', NA is not filtered out
get_val2(x, 'b', default = 'invalid')

# get 'b', NA is considered invalid
get_val2(x, 'b', default = 'invalid', na = TRUE)



# get 'c', length 0 is allowed
get_val2(x, 'c', default = 'invalid', min_len = 0)

# length 0 is forbidden
get_val2(x, 'c', default = 'invalid', min_len = 1)

Returns all names contained in 'HDF5' file

Description

Returns all names contained in 'HDF5' file

Usage

h5_names(file)

Arguments

file

'HDF5' file path

Value

characters, data set names


Check whether a 'HDF5' file can be opened for read/write

Description

Check whether a 'HDF5' file can be opened for read/write

Usage

h5_valid(file, mode = c("r", "w"), close_all = FALSE)

Arguments

file

path to file

mode

'r' for read access and 'w' for write access

close_all

whether to close all connections or just close current connection; default is false. Set this to TRUE if you want to close all other connections to the file

Value

logical whether the file can be opened.

Examples

x <- array(1:27, c(3,3,3))
f <- tempfile()

# No data written to the file, hence invalid
h5_valid(f, 'r')

save_h5(x, f, 'dset')
h5_valid(f, 'w')

# Open the file and hold a connection
ptr <- hdf5r::H5File$new(filename = f, mode = 'w')

# Can read, but cannot write
h5_valid(f, 'r')  # TRUE
h5_valid(f, 'w')  # FALSE

# However, this can be reset via `close_all=TRUE`
h5_valid(f, 'r', close_all = TRUE)
h5_valid(f, 'w')  # TRUE

# Now the connection is no longer valid
ptr

Import electrode table into subject meta folder

Description

Import electrode table into subject meta folder

Usage

import_electrode_table(path, subject, use_fs = NA, dry_run = FALSE, ...)

Arguments

path

path of table file, must be a 'csv' file

subject

'RAVE' subject ID or instance

use_fs

whether to use 'FreeSurfer' files to calculate other coordinates

dry_run

whether to dry-run the process; if true, then the table will be generated but not saved to subject's meta folder

...

passed to read.csv

Value

Nothing, the electrode information will be written directly to the subject's meta directory


Install 'RAVE' modules

Description

Install 'RAVE' modules

Usage

install_modules(modules, dependencies = FALSE)

Arguments

modules

a vector of characters, repository names; default is to automatically determined from a public registry

dependencies

whether to update dependent packages; default is false

Value

nothing


Install a subject from the internet, a zip file or a directory

Description

Install a subject from the internet, a zip file or a directory

Usage

install_subject(
  path = ".",
  ask = interactive(),
  overwrite = FALSE,
  backup = TRUE,
  use_cache = TRUE,
  dry_run = FALSE,
  force_project = NA,
  force_subject = NA,
  ...
)

Arguments

path

path to subject archive, can be a path to directory, a zip file, or an internet address (must starts with 'http', or 'ftp')

ask

when overwrite is false, whether to ask the user if subject exists; default is true when running in interactive session; users will be prompt with choices; if ask=FALSE and overwrite=FALSE, then the process will end with a warning if the subject exists.

overwrite

whether to overwrite existing subject, see argument ask and backup

backup

whether to back-up the subject when overwriting the data; default is true, which will rename the old subject folders instead of removing; set to true to remove existing subject.

use_cache

whether to use cached extraction directory; default is true. Set it to FALSE if you want a clean installation.

dry_run

whether to dry-run the process instead of actually installing; this rehearsal can help you see the progress and prevent you from losing data

force_project, force_subject

force set the project or subject; will raise a warning as this might mess up some pipelines

...

passed to download.file

Examples

# Please run 2nd example of function archive_subject

## Not run: 

install_subject(path)


## End(Not run)

Check if current session is on 'CRAN'

Description

Use this function only for examples and test. The goal is to comply with the 'CRAN' policy. Do not use it in normal functions to cheat. Violating 'CRAN' policy will introduce instability to your code. Make sure reading Section 'Details' before using this function.

Usage

is_on_cran(if_interactive = FALSE, verbose = FALSE)

Arguments

if_interactive

whether interactive session will be considered as on 'CRAN'; default is FALSE

verbose

whether to print out reason of return; default is no

Details

According to 'CRAN' policy, package examples and test functions may only use maximum 2 'CPU' cores. Examples running too long should be suppressed. Normally package developers will use interactive() to avoid running examples or parallel code on 'CRAN'. However, when checked locally, these examples will be skipped too. Coding bug in those examples will not be reported.

The objective is to allow 'RAVE' package developers to write and test examples locally or on integrated development environment (such as 'Github'), while suppressing them on 'CRAN'. In such way, bugs in the examples will be revealed and fixed promptly.

Do not use this function inside of the package functions to cheat or slip illegal code under the eyes of 'CRAN' folks. This will increase their work load and introduce instability to your code. If I find it out, I will report your package to 'CRAN'. Only use this function to make your package more robust. If you are developing 'RAVE' module, this function is explicitly banned. I'll implement a check for this, sooner or later.

Value

A logical whether current environment should be considered as on 'CRAN'.


Check if data is close to “valid"

Description

Check if data is close to “valid"

Usage

is_valid_ish(
  x,
  min_len = 1,
  max_len = Inf,
  mode = NA,
  na = TRUE,
  blank = FALSE,
  all = FALSE
)

Arguments

x

data to check

min_len, max_len

minimal and maximum length

mode

which storage mode (see mode) should x be considered valid. Default is NA: disabled.

na

whether NA values considered invalid?

blank

whether blank string considered invalid?

all

if na or blank is true, whether all element of x being invalid will result in failure?

Value

logicals whether input x is valid

Examples

# length checks
is_valid_ish(NULL)                     # FALSE
is_valid_ish(integer(0))               # FALSE
is_valid_ish(integer(0), min_len = 0)  # TRUE
is_valid_ish(1:10, max_len = 9)        # FALSE

# mode check
is_valid_ish(1:10)                     # TRUE
is_valid_ish(1:10, mode = 'numeric')   # TRUE
is_valid_ish(1:10, mode = 'character') # FALSE

# NA or blank checks
is_valid_ish(NA)                     # FALSE
is_valid_ish(c(1,2,NA), all = FALSE) # FALSE
is_valid_ish(c(1,2,NA), all = TRUE)  # TRUE as not all elements are NA

is_valid_ish(c('1',''), all = FALSE)  # TRUE
is_valid_ish(1:3, all = FALSE)        # TRUE as 1:3 are not characters

Check If Input Has Blank String

Description

Check If Input Has Blank String

Usage

is.blank(x)

Arguments

x

input data: a vector or an array

Value

x == ""


Check If Input Has Zero Length

Description

Check If Input Has Zero Length

Usage

is.zerolenth(x)

Arguments

x

input data: a vector, list, or array

Value

whether x has zero length


Join Multiple Tensors into One Tensor

Description

Join Multiple Tensors into One Tensor

Usage

join_tensors(tensors, temporary = TRUE)

Arguments

tensors

list of Tensor instances

temporary

whether to garbage collect space when exiting R session

Details

Merges multiple tensors. Each tensor must share the same dimension with the last one dimension as 1, for example, 100x100x1. Join 3 tensors like this will result in a 100x100x3 tensor. This function is handy when each sub-tensors are generated separately. However, it does no validation test. Use with cautions.

Value

A new Tensor instance with the last dimension

Author(s)

Zhengjia Wang

Examples

tensor1 <- Tensor$new(data = 1:9, c(3,3,1), dimnames = list(
A = 1:3, B = 1:3, C = 1
), varnames = c('A', 'B', 'C'))
tensor2 <- Tensor$new(data = 10:18, c(3,3,1), dimnames = list(
  A = 1:3, B = 1:3, C = 2
), varnames = c('A', 'B', 'C'))
merged <- join_tensors(list(tensor1, tensor2))
merged$get_data()

Run lapply in parallel

Description

Uses lapply_async2, but allows better parallel scheduling via with_future_parallel. On 'Unix', the function will fork processes. On 'Windows', the function uses strategies specified by on_failure

Usage

lapply_async(
  x,
  FUN,
  FUN.args = list(),
  callback = NULL,
  ncores = NULL,
  on_failure = "multisession",
  ...
)

Arguments

x

iterative elements

FUN

function to apply to each element of x

FUN.args

named list that will be passed to FUN as arguments

callback

callback function or NULL. When passed as function, the function takes one argument (elements of x) as input, and it suppose to return one string character.

ncores

number of cores to use, constraint by the max_worker option (see raveio_getopt); default is the maximum number of workers available

on_failure

alternative strategy if fork process is disallowed (set by users or on 'Windows')

...

passed to lapply_async2

Examples

if(!is_on_cran()) {
library(raveio)

# ---- Basic example ----------------------------
lapply_async(1:16, function(x) {
  # function that takes long to fun
  Sys.sleep(1)
  x
})

# With callback
lapply_async(1:16, function(x){
  Sys.sleep(1)
  x + 1
}, callback = function(x) {
  sprintf("Calculating|%s", x)
})

# With ncores
pids <- lapply_async(1:16, function(x){
  Sys.sleep(0.5)
  Sys.getpid()
}, ncores = 2)

# Unique number of PIDs (cores)
unique(unlist(pids))

# ---- With scheduler ----------------------------
# Scheduler pre-initialize parallel workers and temporary
# switches parallel context. The workers ramp-up
# time can be saved by reusing the workers.
#
with_future_parallel({

  # lapply_async block 1
  pids <- lapply_async(1:16, function(x){
    Sys.sleep(1)
    Sys.getpid()
  }, callback = function(x) {
    sprintf("lapply_async without ncores|%s", x)
  })
  print(unique(unlist(pids)))

  # lapply_async block 2
  pids <- lapply_async(1:16, function(x){
    Sys.sleep(1)
    Sys.getpid()
  }, callback = function(x) {
    sprintf("lapply_async with ncores|%s", x)
  }, ncores = 4)
  print(unique(unlist(pids)))

})


}

R6 Class to Load 'fst' Files

Description

provides hybrid data structure for 'fst' file

Value

none

none

none

vector, dimensions

subset of data

Methods

Public methods


Method open()

to be compatible with LazyH5

Usage
LazyFST$open(...)
Arguments
...

ignored


Method close()

close the connection

Usage
LazyFST$close(..., .remove_file = FALSE)
Arguments
...

ignored

.remove_file

whether to remove the file when garbage collected


Method save()

to be compatible with LazyH5

Usage
LazyFST$save(...)
Arguments
...

ignored


Method new()

constructor

Usage
LazyFST$new(file_path, transpose = FALSE, dims = NULL, ...)
Arguments
file_path

where the data is stored

transpose

whether to load data transposed

dims

data dimension, only support 1 or 2 dimensions

...

ignored


Method get_dims()

get data dimension

Usage
LazyFST$get_dims(...)
Arguments
...

ignored


Method subset()

subset data

Usage
LazyFST$subset(i = NULL, j = NULL, ..., drop = TRUE)
Arguments
i, j, ...

index along each dimension

drop

whether to apply drop the subset

Author(s)

Zhengjia Wang

Examples

if(!is_on_cran()){

# Data to save, total 8 MB
x <- matrix(rnorm(1000000), ncol = 100)

# Save to local disk
f <- tempfile()
fst::write_fst(as.data.frame(x), path = f)

# Load via LazyFST
dat <- LazyFST$new(file_path = f, dims = c(10000, 100))

# dat < 1 MB

# Check whether the data is identical
range(dat[] - x)

# The reading of column is very fast
system.time(dat[,100])

# Reading rows might be slow
system.time(dat[1,])

}

Lazy 'HDF5' file loader

Description

provides hybrid data structure for 'HDF5' file

Value

none

self instance

self instance

subset of data

dimension of the array

data type, currently only character, integer, raw, double, and complex are available, all other types will yield "unknown"

Public fields

quiet

whether to suppress messages

Methods

Public methods


Method finalize()

garbage collection method

Usage
LazyH5$finalize()

Method print()

overrides print method

Usage
LazyH5$print()

Method new()

constructor

Usage
LazyH5$new(file_path, data_name, read_only = FALSE, quiet = FALSE)
Arguments
file_path

where data is stored in 'HDF5' format

data_name

the data stored in the file

read_only

whether to open the file in read-only mode. It's highly recommended to set this to be true, otherwise the file connection is exclusive.

quiet

whether to suppress messages, default is false


Method save()

save data to a 'HDF5' file

Usage
LazyH5$save(
  x,
  chunk = "auto",
  level = 7,
  replace = TRUE,
  new_file = FALSE,
  force = TRUE,
  ctype = NULL,
  size = NULL,
  ...
)
Arguments
x

vector, matrix, or array

chunk

chunk size, length should matches with data dimension

level

compress level, from 1 to 9

replace

if the data exists in the file, replace the file or not

new_file

remove the whole file if exists before writing?

force

if you open the file in read-only mode, then saving objects to the file will raise error. Use force=TRUE to force write data

ctype

data type, see mode, usually the data type of x. Try mode(x) or storage.mode(x) as hints.

size

deprecated, for compatibility issues

...

passed to self open() method


Method open()

open connection

Usage
LazyH5$open(new_dataset = FALSE, robj, ...)
Arguments
new_dataset

only used when the internal pointer is closed, or to write the data

robj

data array to save

...

passed to createDataSet in hdf5r package


Method close()

close connection

Usage
LazyH5$close(all = TRUE)
Arguments
all

whether to close all connections associated to the data file. If true, then all connections, including access from other programs, will be closed


Method subset()

subset data

Usage
LazyH5$subset(..., drop = FALSE, stream = FALSE, envir = parent.frame())
Arguments
drop

whether to apply drop the subset

stream

whether to read partial data at a time

envir

if i,j,... are expressions, where should the expression be evaluated

i, j, ...

index along each dimension


Method get_dims()

get data dimension

Usage
LazyH5$get_dims(stay_open = TRUE)
Arguments
stay_open

whether to leave the connection opened


Method get_type()

get data type

Usage
LazyH5$get_type(stay_open = TRUE)
Arguments
stay_open

whether to leave the connection opened

Author(s)

Zhengjia Wang

Examples

# Data to save
x <- array(rnorm(1000), c(10,10,10))

# Save to local disk
f <- tempfile()
save_h5(x, file = f, name = 'x', chunk = c(10,10,10), level = 0)

# Load via LazyFST
dat <- LazyH5$new(file_path = f, data_name = 'x', read_only = TRUE)

dat

# Check whether the data is identical
range(dat - x)

# Read a slice of the data
system.time(dat[,10,])

Definitions of electrode with 'LFP' signal type

Description

Please use a safer new_electrode function to create instances. This documentation is to describe the member methods of the electrode class LFP_electrode

Value

if the reference number if NULL or 'noref', then returns 0, otherwise returns a FileArray-class

If simplify is enabled, and only one block is loaded, then the result will be a vector (type="voltage") or a matrix (others), otherwise the result will be a named list where the names are the blocks.

Super class

raveio::RAVEAbstarctElectrode -> LFP_electrode

Active bindings

h5_fname

'HDF5' file name

valid

whether current electrode is valid: subject exists and contains current electrode or reference; subject electrode type matches with current electrode type

raw_sample_rate

voltage sample rate

power_sample_rate

power/phase sample rate

preprocess_info

preprocess information

power_file

path to power 'HDF5' file

phase_file

path to phase 'HDF5' file

voltage_file

path to voltage 'HDF5' file

Methods

Public methods

Inherited methods

Method print()

print electrode summary

Usage
LFP_electrode$print()

Method set_reference()

set reference for current electrode

Usage
LFP_electrode$set_reference(reference)
Arguments
reference

either NULL or LFP_electrode instance


Method new()

constructor

Usage
LFP_electrode$new(subject, number, quiet = FALSE)
Arguments
subject, number, quiet

see constructor in RAVEAbstarctElectrode


Method .load_noref_wavelet()

load non-referenced wavelet coefficients (internally used)

Usage
LFP_electrode$.load_noref_wavelet(reload = FALSE)
Arguments
reload

whether to reload cache


Method .load_noref_voltage()

load non-referenced voltage (internally used)

Usage
LFP_electrode$.load_noref_voltage(reload = FALSE)
Arguments
reload

whether to reload cache

srate

voltage signal sample rate


Method .load_wavelet()

load referenced wavelet coefficients (internally used)

Usage
LFP_electrode$.load_wavelet(
  type = c("power", "phase", "wavelet-coefficient"),
  reload = FALSE
)
Arguments
type

type of data to load

reload

whether to reload cache


Method .load_voltage()

load referenced voltage (internally used)

Usage
LFP_electrode$.load_voltage(reload = FALSE)
Arguments
reload

whether to reload cache


Method .load_raw_voltage()

load raw voltage (no process)

Usage
LFP_electrode$.load_raw_voltage(reload = FALSE)
Arguments
reload

whether to reload cache


Method load_data()

method to load electrode data

Usage
LFP_electrode$load_data(
  type = c("power", "phase", "voltage", "wavelet-coefficient", "raw-voltage")
)
Arguments
type

data type such as "power", "phase", "voltage", "wavelet-coefficient", and "raw-voltage". For "power", "phase", and "wavelet-coefficient", 'Wavelet' transforms are required. For "voltage", 'Notch' filters must be applied. All these types except for "raw-voltage" will be referenced. For "raw-voltage", no reference will be performed since the data will be the "raw" signal (no processing).


Method load_blocks()

load electrode block-wise data (with no reference), useful when epoch is absent

Usage
LFP_electrode$load_blocks(
  blocks,
  type = c("power", "phase", "voltage", "wavelet-coefficient", "raw-voltage"),
  simplify = TRUE
)
Arguments
blocks

session blocks

type

data type such as "power", "phase", "voltage", "raw-voltage" (with no filters applied, as-is from imported), "wavelet-coefficient". Note that if type is "raw-voltage", then the data only needs to be imported; for "voltage" data, 'Notch' filters must be applied; for all other types, 'Wavelet' transforms are required.

simplify

whether to simplify the result


Method clear_cache()

method to clear cache on hard drive

Usage
LFP_electrode$clear_cache(...)
Arguments
...

ignored


Method clear_memory()

method to clear memory

Usage
LFP_electrode$clear_memory(...)
Arguments
...

ignored


Method clone()

The objects of this class are cloneable with this method.

Usage
LFP_electrode$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

# Download subject demo/DemoSubject

subject <- as_rave_subject("demo/DemoSubject", strict = FALSE)

if(dir.exists(subject$path)) {

# Electrode 14 in demo/DemoSubject
e <- new_electrode(subject = subject, number = 14, signal_type = "LFP")

# Load CAR reference "ref_13-16,24"
ref <- new_reference(subject = subject, number = "ref_13-16,24",
                     signal_type = "LFP")
e$set_reference(ref)

# Set epoch
e$set_epoch(epoch = 'auditory_onset')

# Set loading window
e$trial_intervals <- list(c(-1, 2))

# Preview
print(e)

# Now epoch power
power <- e$load_data("power")
names(dimnames(power))

# Subset power
subset(power, Time ~ Time < 0, Electrode ~ Electrode == 14)

# Draw baseline
tempfile <- tempfile()
bl <- power_baseline(power, baseline_windows = c(-1, 0),
                     method = "decibel", filebase = tempfile)
collapsed_power <- collapse2(bl, keep = c(2,1))
# Visualize
dname <- dimnames(bl)
image(collapsed_power, x = dname$Time, y = dname$Frequency,
      xlab = "Time (s)", ylab = "Frequency (Hz)",
      main = "Mean power over trial (Baseline: -1~0 seconds)",
      sub = glue('Electrode {e$number} (Reference: {ref$number})'))
abline(v = 0, lty = 2, col = 'blue')
text(x = 0, y = 20, "Audio onset", col = "blue", cex = 0.6)

# clear cache on hard disk
e$clear_cache()
ref$clear_cache()

}

Definitions of reference with 'LFP' signal type

Description

Please use a safer new_reference function to create instances. This documentation is to describe the member methods of the electrode class LFP_reference

Value

if the reference number if NULL or 'noref', then returns 0, otherwise returns a FileArray-class

If simplify is enabled, and only one block is loaded, then the result will be a vector (type="voltage") or a matrix (others), otherwise the result will be a named list where the names are the blocks.

Super class

raveio::RAVEAbstarctElectrode -> LFP_reference

Active bindings

exists

whether electrode exists in subject

h5_fname

'HDF5' file name

valid

whether current electrode is valid: subject exists and contains current electrode or reference; subject electrode type matches with current electrode type

raw_sample_rate

voltage sample rate

power_sample_rate

power/phase sample rate

preprocess_info

preprocess information

power_file

path to power 'HDF5' file

phase_file

path to phase 'HDF5' file

voltage_file

path to voltage 'HDF5' file

Methods

Public methods

Inherited methods

Method print()

print reference summary

Usage
LFP_reference$print()

Method set_reference()

set reference for current electrode

Usage
LFP_reference$set_reference(reference)
Arguments
reference

either NULL or LFP_electrode instance


Method new()

constructor

Usage
LFP_reference$new(subject, number, quiet = FALSE)
Arguments
subject, number, quiet

see constructor in RAVEAbstarctElectrode


Method .load_noref_wavelet()

load non-referenced wavelet coefficients (internally used)

Usage
LFP_reference$.load_noref_wavelet(reload = FALSE)
Arguments
reload

whether to reload cache


Method .load_noref_voltage()

load non-referenced voltage (internally used)

Usage
LFP_reference$.load_noref_voltage(reload = FALSE)
Arguments
reload

whether to reload cache

srate

voltage signal sample rate


Method .load_wavelet()

load referenced wavelet coefficients (internally used)

Usage
LFP_reference$.load_wavelet(
  type = c("power", "phase", "wavelet-coefficient"),
  reload = FALSE
)
Arguments
type

type of data to load

reload

whether to reload cache


Method .load_voltage()

load referenced voltage (internally used)

Usage
LFP_reference$.load_voltage(reload = FALSE)
Arguments
reload

whether to reload cache


Method load_data()

method to load electrode data

Usage
LFP_reference$load_data(
  type = c("power", "phase", "voltage", "wavelet-coefficient")
)
Arguments
type

data type such as "power", "phase", "voltage", "wavelet-coefficient".


Method load_blocks()

load electrode block-wise data (with reference), useful when epoch is absent

Usage
LFP_reference$load_blocks(
  blocks,
  type = c("power", "phase", "voltage", "wavelet-coefficient"),
  simplify = TRUE
)
Arguments
blocks

session blocks

type

data type such as "power", "phase", "voltage", "wavelet-coefficient". Note that if type is voltage, then 'Notch' filters must be applied; otherwise 'Wavelet' transforms are required.

simplify

whether to simplify the result


Method clear_cache()

method to clear cache on hard drive

Usage
LFP_reference$clear_cache(...)
Arguments
...

ignored


Method clear_memory()

method to clear memory

Usage
LFP_reference$clear_memory(...)
Arguments
...

ignored


Method clone()

The objects of this class are cloneable with this method.

Usage
LFP_reference$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## Not run: 

# Download subject demo/DemoSubject


subject <- as_rave_subject("demo/DemoSubject")

# Electrode 14 as reference electrode (Bipolar referencing)
e <- new_reference(subject = subject, number = "ref_14",
                   signal_type = "LFP")

# Reference "ref_13-16,24" (CAR or white-matter reference)
ref <- new_reference(subject = subject, number = "ref_13-16,24",
                     signal_type = "LFP")
ref

# Set epoch
e$set_epoch(epoch = 'auditory_onset')

# Set loading window
e$trial_intervals <- list(c(-1, 2))

# Preview
print(e)

# Now epoch power
power <- e$load_data("power")
names(dimnames(power))

# Subset power
subset(power, Time ~ Time < 0, Electrode ~ Electrode == 14)

# clear cache on hard disk
e$clear_cache()


## End(Not run)

Read in description files from 'BIDS-iEEG' format

Description

Analyze file structures and import all json and tsv files. File specification can be found at https://bids-specification.readthedocs.io/en/stable/, chapter "Modality specific files", section "Intracranial Electroencephalography" (doi:10.1038/s41597-019-0105-7). Please note that this function has very limited support on BIDS format.

Usage

load_bids_ieeg_header(bids_root, project_name, subject_code, folder = "ieeg")

Arguments

bids_root

'BIDS' root directory

project_name

project folder name

subject_code

subject code, do not include "sub-" prefix

folder

folder name corresponding to 'iEEG' data. It's possible to analyze other folders. However, by default, the function is designed for 'ieeg' folder.

Value

A list containing the information below:

subject_code

character, removed leading "sub-"

project_name

character, project name

has_session

whether session/block names are indicated by the file structure

session_names

session/block names indicated by file structure. If missing, then session name will be "default"

paths

a list containing path information

stimuli_path

stimuli path, not used for now

sessions

A named list containing meta information for each session/block. The names of the list is task name, and the items corresponding to the task contains events and channel information. Miscellaneous files are stored in "others" variable.

Examples

# Download https://github.com/bids-standard/bids-examples/
# extract to directory ~/rave_data/bids_dir/

bids_root <- '~/rave_data/bids_dir/'
project_name <- 'ieeg_visual'

if(dir.exists(bids_root) &&
   dir.exists(file.path(bids_root, project_name, 'sub-01'))){

  header <- load_bids_ieeg_header(bids_root, project_name, '01')

  print(header)

  # sessions
  names(header$sessions)

  # electrodes
  head(header$sessions$`01`$spaces$unknown_space$table)

  # visual task channel settings
  head(header$sessions$`01`$tasks$`01-visual-01`$channels)

  # event table
  head(header$sessions$`01`$tasks$`01-visual-01`$channels)
}

Function try to load 'fst' arrays, if not found, read 'HDF5' arrays

Description

Function try to load 'fst' arrays, if not found, read 'HDF5' arrays

Usage

load_fst_or_h5(
  fst_path,
  h5_path,
  h5_name,
  fst_need_transpose = FALSE,
  fst_need_drop = FALSE,
  ram = FALSE
)

Arguments

fst_path

'fst' file cache path

h5_path

alternative 'HDF5' file path

h5_name

'HDF5' data name

fst_need_transpose

does 'fst' data need transpose?

fst_need_drop

drop dimensions

ram

whether to load to memory directly or perform lazy loading

Details

RAVE stores data with redundancy. One electrode data is usually saved with two copies in different formats: 'HDF5' and 'fst', where 'HDF5' is cross-platform and supported by multiple languages such as Matlab, Python, etc, while 'fst' format is supported by R only, with super high read/write speed. load_fst_or_h5 checks whether the presence of 'fst' file, if failed, then it reads data from persistent 'HDF5' file.

Value

If 'fst' cache file exists, returns LazyFST object, otherwise returns LazyH5 instance


Lazy Load 'HDF5' File via hdf5r-package

Description

Wrapper for class LazyH5, which load data with "lazy" mode - only read part of dataset when needed.

Usage

load_h5(file, name, read_only = TRUE, ram = FALSE, quiet = FALSE)

Arguments

file

'HDF5' file

name

group/data_name path to dataset (H5D data)

read_only

only used if ram=FALSE, whether the returned LazyH5 instance should be read only

ram

load data to memory immediately, default is false

quiet

whether to suppress messages

Value

If ram is true, then return data as arrays, otherwise return a LazyH5 instance.

See Also

save_h5

Examples

file <- tempfile()
x <- array(1:120, dim = c(4,5,6))

# save x to file with name /group/dataset/1
save_h5(x, file, '/group/dataset/1', quiet = TRUE)

# read data
y <- load_h5(file, '/group/dataset/1', ram = TRUE)
class(y)   # array

z <- load_h5(file, '/group/dataset/1', ram = FALSE)
class(z)   # LazyH5

dim(z)

Load 'RAVE' subject meta data

Description

Load 'RAVE' subject meta data

Usage

load_meta2(meta_type, project_name, subject_code, subject_id, meta_name)

Arguments

meta_type

electrodes, epochs, time_points, frequencies, references ...

project_name

project name

subject_code

subject code

subject_id

"project_name/subject_code"

meta_name

only used if meta_type is epochs or references

Value

A data frame of the specified meta type or NULL is no meta data is found.


A port to read_yaml

Description

For more examples, see save_yaml.

Usage

load_yaml(file, ..., map = NULL)

Arguments

file, ...

passed to read_yaml

map

fastmap2 instance or NULL

Value

A fastmap2. If map is provided then return map, otherwise return newly created one

See Also

fastmap2, save_yaml, read_yaml, write_yaml


Convert 'FreeSurfer' 'mgh' to 'Nifti'

Description

Convert 'FreeSurfer' 'mgh' to 'Nifti'

Usage

mgh_to_nii(from, to)

Arguments

from

path to 'FreeSurfer' 'mgh' or 'mgz' file

to

path to 'Nifti' file, must ends with 'nii' or 'nii.gz'

Value

Nothing; the file will be created to path specified by to


Add new 'RAVE' (2.0) module to current project

Description

Add new 'RAVE' (2.0) module to current project

Usage

module_add(
  module_id,
  module_label,
  path = ".",
  type = c("default", "bare", "scheduler"),
  ...,
  pipeline_name = module_id,
  overwrite = FALSE
)

Arguments

module_id

module ID to create, must be unique

module_label

a friendly label to display in the dashboard

path

project root path; default is current directory

type

template to choose, options are 'default' and 'bare'

...

additional configurations to the module such as 'order', 'group', 'badge'

pipeline_name

the pipeline name to create along with the module; default is identical to module_id

overwrite

whether to overwrite existing module if module with same ID exists; default is false

Value

Nothing.


'RAVE' module registry

Description

Create, view, or reserve the module registry

Usage

module_registry(
  title,
  repo,
  modules,
  authors,
  url = sprintf("https://github.com/%s", repo)
)

module_registry2(repo, description)

get_modules_registries(update = NA)

get_module_description(path)

add_module_registry(title, repo, modules, authors, url, dry_run = FALSE)

Arguments

title

title of the registry, usually identical to the description title in 'DESCRIPTION' or RAVE-CONFIG file

repo

'Github' repository

modules

characters of module ID, must only contain letters, digits, underscore, dash; must not be duplicated with existing registered modules

authors

a list of module authors; there must be one and only one author with 'cre' role (see person). This author will be considered maintainer, who will be in charge if editing the registry

url

the web address of the repository

update

whether to force updating the registry

path, description

path to 'DESCRIPTION' or RAVE-CONFIG file

dry_run

whether to generate and preview message content instead of opening an email link

Details

A 'RAVE' registry contains the following data entries: repository title, name, 'URL', authors, and a list of module IDs. 'RAVE' requires that each module must use a unique module ID. It will cause an issue if two modules share the same ID. Therefore 'RAVE' maintains a public registry list such that the module maintainers can register their own module ID and prevent other people from using it.

To register your own module ID, please use add_module_registry to validate and send an email to the 'RAVE' development team.

Value

a registry object, or a list of registries

Examples

if(interactive()) {

library(raveio)

# get current registries
get_modules_registries(FALSE)

# create your own registry
module_registry(
  repo = "rave-ieeg/rave-pipelines",
  title = "A Collection of 'RAVE' Builtin Pipelines",
  authors = list(
    list("Zhengjia", "Wang", role = c("cre", "aut"),
         email = "[email protected]")
  ),
  modules = "brain_viewer"
)

# If your repository is on Github and RAVE-CONFIG file exists
module_registry2("rave-ieeg/rave-pipelines")

# send a request to add your registry

reg <- module_registry2("rave-ieeg/rave-pipelines")
add_module_registry(reg)

}

Create 'RAVE' constrained variables

Description

Create a variable that automatically validates

Usage

new_constraints(type, assertions = NULL)

new_constrained_variable(name, initial_value, constraints = NULL, ...)

new_constrained_binding(name, expr, quoted = FALSE, constraints = NULL, ...)

Arguments

type

variable type; checkmate::assert_* will be automatically applied if applicable

assertions

named list; each name stands for an assertion type, and the corresponding item can be one of the follows; please see 'Examples' for usages.

list of arguments or NULL

name of the assertion must be a valid assertion function in package checkmate. For example, list(numeric=NULL) will call checkmate::assert_numeric when value is validated

a function

name of the assertion can be arbitrary, users are in charge of the validation function. This function should take only one argument and return either TRUE if the validation passes, or a character of the error message.

name

character(1), variable name

initial_value

initial value, if missing, then variable will be assigned with an empty list with class name 'key_missing'

constraints, ...

when constraints is an instance of RAVEVariableConstraints, ... will be ignored. When constraints is a string, then constraints will be passed to new_constraints (see argument type), and ... will be packed as assertion parameters (see assertions)

expr

expression for binding

quoted

whether expr is quoted, default is false

Examples

# ---- Basic usage ----------------------------------------
analysis_range <- new_constrained_variable("Analysis range")

# Using checkmates::assert_numeric
analysis_range$use_constraints(
  constraints = "numeric",
  any.missing = FALSE,
  len = 2,
  sorted = TRUE,
  null.ok = FALSE
)

analysis_range$initialized # FALSE
print(analysis_range)

# set value
analysis_range$set_value(c(1, 2))

# get value
analysis_range$value   # or $get_value()

# ---- Fancy constraints ------------------------------------
# construct an analysis range between -1~1 or 4~10
time_window <- validate_time_window(c(-1, 1, 4, 10))
analysis_range <- new_constrained_variable("Analysis range")
analysis_range$use_constraints(
  constraints = new_constraints(
    type = "numeric",
    assertions = list(
      # validator 1
      "numeric" = list(
        any.missing = FALSE,
        len = 2,
        sorted = TRUE,
        null.ok = FALSE
      ),

      # validator 2
      "range" = quote({
        check <- FALSE
        if(length(.x) == 2) {
          check <- sapply(time_window, function(w) {
            if(
              .x[[1]] >= w[[1]] &&
              .x[[2]] <= w[[2]]
            ) { return (TRUE) }
            return( FALSE )
          })
        }
        if(any(check)) { return(TRUE) }

        valid_ranges <- paste(
          sapply(time_window, function(w) {
            paste(sprintf("%.2f", w), collapse = ",")
          }),
          collapse = "] or ["
        )
        return(sprintf("Invalid range: must be [%s]", valid_ranges))
      })
    )
  )
)

# validate and print out error messages
# remove `on_error` argument to stop on errors
analysis_range$validate(on_error = "message")

# Try with values (-2,1) instead of c(0,1)
analysis_range$value <- c(0, 1)

print(analysis_range)
analysis_range[]

# Change the context
time_window <- validate_time_window(c(0, 0.5))

# re-validate will error out
analysis_range$validate(on_error = "message")

Create new electrode channel instance or a reference signal instance

Description

Create new electrode channel instance or a reference signal instance

Usage

new_electrode(subject, number, signal_type, ...)

new_reference(subject, number, signal_type, ...)

Arguments

subject

characters, or a RAVESubject instance

number

integer in new_electrode, or characters in new_reference; see 'Details' and 'Examples'

signal_type

signal type of the electrode or reference; can be automatically inferred, but it is highly recommended to specify a value; see SIGNAL_TYPES

...

other parameters passed to class constructors, respectively

Details

In new_electrode, number should be a positive valid integer indicating the electrode number. In new_reference, number can be one of the followings:

'noref', or NULL

no reference is needed

'ref_X'

where 'X' is a single number, then the reference is another existing electrode; this could occur in bipolar-reference cases

'ref_XXX'

'XXX' is a combination of multiple electrodes that can be parsed by parse_svec. This could occur in common average reference, or white matter reference. One example is 'ref_13-16,24', meaning the reference signal is an average of electrode 13, 14, 15, 16, and 24.

Value

Electrode or reference instances that inherit RAVEAbstarctElectrode class

Examples

## Not run: 

# Download subject demo/DemoSubject (~500 MB)

# Electrode 14 in demo/DemoSubject
subject <- as_rave_subject("demo/DemoSubject")
e <- new_electrode(subject = subject, number = 14, signal_type = "LFP")

# Load CAR reference "ref_13-16,24"
ref <- new_reference(subject = subject, number = "ref_13-16,24",
                     signal_type = "LFP")
e$set_reference(ref)


# Set epoch
e$set_epoch(epoch = 'auditory_onset')

# Set loading window
e$trial_intervals <- list(c(-1, 2))

# Preview
print(e)

# Now epoch power
power <- e$load_data("power")
names(dimnames(power))

# Subset power
subset(power, Time ~ Time < 0, Electrode ~ Electrode == 14)

# Draw baseline
tempfile <- tempfile()
bl <- power_baseline(power, baseline_windows = c(-1, 0),
                     method = "decibel", filebase = tempfile)
collapsed_power <- collapse2(bl, keep = c(2,1))
# Visualize
dname <- dimnames(bl)
image(collapsed_power, x = dname$Time, y = dname$Frequency,
      xlab = "Time (s)", ylab = "Frequency (Hz)",
      main = "Mean power over trial (Baseline: -1~0 seconds)",
      sub = glue('Electrode {e$number} (Reference: {ref$number})'))
abline(v = 0, lty = 2, col = 'blue')
text(x = 0, y = 20, "Audio onset", col = "blue", cex = 0.6)

# clear cache on hard disk
e$clear_cache()
ref$clear_cache()


## End(Not run)

Create a collection of constraint variables

Description

Create a collection of constraint variables

Usage

new_variable_collection(name = "", explicit = TRUE, r6_def = NULL)

Arguments

name

collection name, default is empty

explicit

whether setting and getting variables should be explicit, default is TRUE, which means trying to get undefined variables will result in errors

r6_def

R6 class generator; default is RAVEVariableCollection. This input is for class definitions that are child classes of RAVEVariableCollection.

Value

A RAVEVariableCollectionWrapper instance

Examples

collection <- new_variable_collection()

# Add unconstrained variables
collection$add_variable(id = "title", "Voltage traces")

# Add a variable with placeholder
collection$add_variable(id = "time_points")

# Add variable with constraints
collection$add_variable(
  id = "analysis_range",
  var = new_constrained_variable(
    name = "Analysis range",
    initial_value = c(0, 1),
    constraints = "numeric",
    any.missing = FALSE,
    len = 2,
    sorted = TRUE,
    null.ok = FALSE
  )
)

collection$use_constraints(quote({
  # `x` is the list of values
  time_range <- range(.x$time_points, na.rm = TRUE)
  if(
    .x$analysis_range[[1]] >= time_range[[1]] &&
    .x$analysis_range[[2]] <= time_range[[2]]
  ) {
    # valid
    re <- TRUE
  } else {

    # error message
    re <- sprintf(
      "Invalid analysis range, must be within [%.2f, %.2f]",
      time_range[[1]], time_range[[2]]
    )
  }

  re
}))


collection$set_value("time_points", seq(-1, 10, by = 0.5))

# validation will pass
collection$validate()

# Get variable values
collection$as_list()
collection[]

# get one variable
collection$get_value("analysis_range")

# get unregistered variable
collection$get_value("unregistered_variable")

# get partial variables with single `[`
collection["title", "analysis_range"]
collection[c("title", "analysis_range")]

collection$set_value("analysis_range", c(-2, 5))

## Not run: 
collection$validate()

# error out when explicit, please either
# set explicit=TRUE or register the variable via $add_variable
collection$set_value("unregistered_variable", 1)


## End(Not run)

# turn off explicit variable option
collection$explicit <- FALSE
collection$set_value("unregistered_variable", 1)
collection$get_value("unregistered_variable")

Register 'CT' to 'MR' images via 'NiftyReg'

Description

Supports 'Rigid', 'affine', or 'non-linear' transformation

Usage

niftyreg_coreg(
  ct_path,
  mri_path,
  coreg_path = NULL,
  reg_type = c("rigid", "affine", "nonlinear"),
  interp = c("trilinear", "cubic", "nearest"),
  verbose = TRUE,
  ...
)

cmd_run_niftyreg_coreg(
  subject,
  ct_path,
  mri_path,
  reg_type = c("rigid", "affine", "nonlinear"),
  interp = c("trilinear", "cubic", "nearest"),
  verbose = TRUE,
  dry_run = FALSE,
  ...
)

Arguments

ct_path, mri_path

absolute paths to 'CT' and 'MR' image files

coreg_path

registration path, where to save results; default is the parent folder of ct_path

reg_type

registration type, choices are 'rigid', 'affine', or 'nonlinear'

interp

how to interpolate when sampling volumes, choices are 'trilinear', 'cubic', or 'nearest'

verbose

whether to verbose command; default is true

...

other arguments passed to register_volume

subject

'RAVE' subject

dry_run

whether to dry-run the script and to print out the command instead of executing the code; default is false

Value

Nothing is returned from the function. However, several files will be generated at the 'CT' path:

'ct_in_t1.nii'

aligned 'CT' image; the image is also re-sampled into 'MRI' space

'CT_IJK_to_MR_RAS.txt'

transform matrix from volume 'IJK' space in the original 'CT' to the 'RAS' anatomical coordinate in 'MR' scanner

'CT_RAS_to_MR_RAS.txt'

transform matrix from scanner 'RAS' space in the original 'CT' to 'RAS' in 'MR' scanner space


Creates 'RAVE' pipeline instance

Description

Set pipeline inputs, execute, and read pipeline outputs

Usage

pipeline(
  pipeline_name,
  settings_file = "settings.yaml",
  paths = pipeline_root(),
  temporary = FALSE
)

pipeline_from_path(path, settings_file = "settings.yaml")

Arguments

pipeline_name

the name of the pipeline, usually title field in the 'DESCRIPTION' file, or the pipeline folder name (if description file is missing)

settings_file

the name of the settings file, usually stores user inputs

paths

the paths to search for the pipeline, usually the parent directory of the pipeline; default is pipeline_root, which only search for pipelines that are installed or in current working directory.

temporary

see pipeline_root

path

the pipeline folder

Value

A PipelineTools instance

Examples

if(!is_on_cran()) {

library(raveio)

# ------------ Set up a bare minimal example pipeline ---------------
pipeline_path <- pipeline_create_template(
  root_path = tempdir(), pipeline_name = "raveio_demo",
  overwrite = TRUE, activate = FALSE, template_type = "rmd-bare")

save_yaml(list(
  n = 100, pch = 16, col = "steelblue"
), file = file.path(pipeline_path, "settings.yaml"))

pipeline_build(pipeline_path)

rmarkdown::render(input = file.path(pipeline_path, "main.Rmd"),
                  output_dir = pipeline_path,
                  knit_root_dir = pipeline_path,
                  intermediates_dir = pipeline_path, quiet = TRUE)

utils::browseURL(file.path(pipeline_path, "main.html"))

# --------------------- Example starts ------------------------

pipeline <- pipeline("raveio_demo", paths = tempdir())

pipeline$run("plot_data")

# Run again and you will see some targets are skipped
pipeline$set_settings(pch = 2)
pipeline$run("plot_data")

head(pipeline$read("input_data"))

# or use
pipeline[c("n", "pch", "col")]
pipeline[-c("input_data")]

pipeline$target_table

pipeline$result_table

pipeline$progress("details")

# --------------------- Clean up ------------------------
unlink(pipeline_path, recursive = TRUE)

}

Combine and execute pipelines

Description

Combine and execute pipelines

Usage

pipeline_collection(root_path = NULL, overwrite = FALSE)

Arguments

root_path

directory to store pipelines and results

overwrite

whether to overwrite if root_path exists; default is false, and raises an error when root_path exists

Value

A PipelineCollections instance


Install 'RAVE' pipelines

Description

Install 'RAVE' pipelines

Usage

pipeline_install_local(
  src,
  to = c("default", "custom", "workdir", "tempdir"),
  upgrade = FALSE,
  force = FALSE,
  set_default = NA,
  ...
)

pipeline_install_github(
  repo,
  to = c("default", "custom", "workdir", "tempdir"),
  upgrade = FALSE,
  force = FALSE,
  set_default = NA,
  ...
)

Arguments

src

pipeline directory

to

installation path; choices are 'default', 'custom', 'workdir', and 'tempdir'. Please specify pipeline root path via pipeline_root when 'custom' is used.

upgrade

whether to upgrade the dependence; default is FALSE for stability, however, it is highly recommended to upgrade your dependencies

force

whether to force installing the pipelines

set_default

whether to set current pipeline module folder as the default, will be automatically set when the pipeline is from the official 'Github' repository.

...

other parameters not used

repo

'Github' repository in user-repository combination, for example, 'rave-ieeg/rave-pipeline'

Value

nothing


Get or change pipeline input parameter settings

Description

Get or change pipeline input parameter settings

Usage

pipeline_settings_set(
  ...,
  pipeline_path = Sys.getenv("RAVE_PIPELINE", "."),
  pipeline_settings_path = file.path(pipeline_path, "settings.yaml")
)

pipeline_settings_get(
  key,
  default = NULL,
  constraint = NULL,
  pipeline_path = Sys.getenv("RAVE_PIPELINE", "."),
  pipeline_settings_path = file.path(pipeline_path, "settings.yaml")
)

Arguments

pipeline_path

the root directory of the pipeline

pipeline_settings_path

the settings file of the pipeline, must be a 'yaml' file; default is 'settings.yaml' in the current pipeline

key, ...

the character key(s) to get or set

default

the default value is key is missing

constraint

the constraint of the resulting value; if not NULL, then result must be within the constraint values, otherwise the first element of constraint will be returned. This is useful to make sure the results stay within given options

Value

pipeline_settings_set returns a list of all the settings. pipeline_settings_get returns the value of given key.


Configure 'rmarkdown' files to build 'RAVE' pipelines

Description

Allows building 'RAVE' pipelines from 'rmarkdown' files. Please use it in 'rmarkdown' scripts only. Use pipeline_create_template to create an example.

Usage

configure_knitr(languages = c("R", "python"))

pipeline_setup_rmd(
  module_id,
  env = parent.frame(),
  collapse = TRUE,
  comment = "#>",
  languages = c("R", "python"),
  project_path = dipsaus::rs_active_project(child_ok = TRUE, shiny_ok = TRUE)
)

Arguments

languages

one or more programming languages to support; options are 'R' and 'python'

module_id

the module ID, usually the name of direct parent folder containing the pipeline file

env

environment to set up the pipeline translator

collapse, comment

passed to set method of opts_chunk

project_path

the project path containing all the pipeline folders, usually the active project folder

Value

A function that is supposed to be called later that builds the pipeline scripts


Connect and schedule pipelines

Description

Connect and schedule pipelines

Connect and schedule pipelines

Value

A list containing

id

the pipeline ID that can be used by deps

pipeline

forked pipeline instance

target_names

copy of names

depend_on

copy of deps

cue

copy of cue

standalone

copy of standalone

Public fields

verbose

whether to verbose the build

Active bindings

root_path

path to the directory that contains pipelines and scheduler

collection_path

path to the pipeline collections

pipeline_ids

pipeline ID codes

Methods

Public methods


Method new()

Constructor

Usage
PipelineCollections$new(root_path = NULL, overwrite = FALSE)
Arguments
root_path

where to store the pipelines and intermediate results

overwrite

whether to overwrite if root_path exists


Method add_pipeline()

Add pipeline into the collection

Usage
PipelineCollections$add_pipeline(
  x,
  names = NULL,
  deps = NULL,
  pre_hook = NULL,
  post_hook = NULL,
  cue = c("always", "thorough", "never"),
  search_paths = pipeline_root(),
  standalone = TRUE,
  hook_envir = parent.frame()
)
Arguments
x

a pipeline name (can be found via pipeline_list), or a PipelineTools

names

pipeline targets to execute

deps

pipeline IDs to depend on; see 'Values' below

pre_hook

function to run before the pipeline; the function needs two arguments: input map (can be edit in-place), and path to a directory that allows to store temporary files

post_hook

function to run after the pipeline; the function needs two arguments: pipeline object, and path to a directory that allows to store intermediate results

cue

whether to always run dependence

search_paths

where to search for pipeline if x is a character; ignored when x is a pipeline object

standalone

whether the pipeline should be standalone, set to TRUE if the same pipeline added multiple times should run independently; default is true

hook_envir

where to look for global environments if pre_hook or post_hook contains global variables; default is the calling environment


Method build_pipelines()

Build pipelines and visualize

Usage
PipelineCollections$build_pipelines(visualize = TRUE)
Arguments
visualize

whether to visualize the pipeline; default is true


Method run()

Run the collection of pipelines

Usage
PipelineCollections$run(
  error = c("error", "warning", "ignore"),
  .scheduler = c("none", "future", "clustermq"),
  .type = c("callr", "smart", "vanilla"),
  .as_promise = FALSE,
  .async = FALSE,
  rebuild = NA,
  ...
)
Arguments
error

what to do when error occurs; default is 'error' throwing errors; other choices are 'warning' and 'ignore'

.scheduler, .type, .as_promise, .async, ...

passed to pipeline_run

rebuild

whether to re-build the pipeline; default is NA ( if the pipeline has been built before, then do not rebuild)


Method get_scheduler()

Get scheduler object

Usage
PipelineCollections$get_scheduler()

Pipeline result object

Description

Pipeline result object

Pipeline result object

Value

TRUE if the target is finished, or FALSE if timeout is reached

Public fields

progressor

progress bar object, usually generated from progress2

promise

a promise instance that monitors the pipeline progress

verbose

whether to print warning messages

names

names of the pipeline to build

async_callback

function callback to call in each check loop; only used when the pipeline is running in async=TRUE mode

check_interval

used when async=TRUE in pipeline_run, interval in seconds to check the progress

Active bindings

variables

target variables of the pipeline

variable_descriptions

readable descriptions of the target variables

valid

logical true or false whether the result instance hasn't been invalidated

status

result status, possible status are 'initialize', 'running', 'finished', 'canceled', and 'errored'. Note that 'finished' only means the pipeline process has been finished.

process

(read-only) process object if the pipeline is running in 'async' mode, or NULL; see r_bg.

Methods

Public methods


Method validate()

check if result is valid, raises errors when invalidated

Usage
PipelineResult$validate()

Method invalidate()

invalidate the pipeline result

Usage
PipelineResult$invalidate()

Method get_progress()

get pipeline progress

Usage
PipelineResult$get_progress()

Method new()

constructor (internal)

Usage
PipelineResult$new(path = character(0L), verbose = FALSE)
Arguments
path

pipeline path

verbose

whether to print warnings


Method run()

run pipeline (internal)

Usage
PipelineResult$run(
  expr,
  env = parent.frame(),
  quoted = FALSE,
  async = FALSE,
  process = NULL
)
Arguments
expr

expression to evaluate

env

environment of expr

quoted

whether expr has been quoted

async

whether the process runs in other sessions

process

the process object inherits process, will be inferred from expr if process=NULL, and will raise errors if cannot be found


Method await()

wait until some targets get finished

Usage
PipelineResult$await(names = NULL, timeout = Inf)
Arguments
names

target names to wait, default is NULL, i.e. to wait for all targets that have been scheduled

timeout

maximum waiting time in seconds


Method print()

print method

Usage
PipelineResult$print()

Method get_values()

get results

Usage
PipelineResult$get_values(names = NULL, ...)
Arguments
names

the target names to read

...

passed to pipeline_read


Method clone()

The objects of this class are cloneable with this method.

Usage
PipelineResult$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.


Class definition for pipeline tools

Description

Class definition for pipeline tools

Class definition for pipeline tools

Value

The value of the inputs, or a list if key is missing

The values of the targets

A PipelineResult instance if as_promise or async is true; otherwise a list of values for input names

An environment of shared variables

See type

A table of the progress

Nothing

ancestor target names (including names)

A new pipeline object based on the path given

A new pipeline object based on the path given

the saved file path

the data if file is found or a default value

A list of key-value pairs

A list of the preferences. If simplify is true and length if keys is 1, then returns the value of that preference

logical whether the keys exist

Active bindings

description

pipeline description

settings_path

absolute path to the settings file

extdata_path

absolute path to the user-defined pipeline data folder

preference_path

directory to the pipeline preference folder

target_table

table of target names and their descriptions

result_table

summary of the results, including signatures of data and commands

pipeline_path

the absolute path of the pipeline

pipeline_name

the code name of the pipeline

Methods

Public methods


Method new()

construction function

Usage
PipelineTools$new(
  pipeline_name,
  settings_file = "settings.yaml",
  paths = pipeline_root(),
  temporary = FALSE
)
Arguments
pipeline_name

name of the pipeline, usually in the pipeline 'DESCRIPTION' file, or pipeline folder name

settings_file

the file name of the settings file, where the user inputs are stored

paths

the paths to find the pipeline, usually the parent folder of the pipeline; default is pipeline_root()

temporary

whether not to save paths to current pipeline root registry. Set this to TRUE when importing pipelines from subject pipeline folders


Method set_settings()

set inputs

Usage
PipelineTools$set_settings(..., .list = NULL)
Arguments
..., .list

named list of inputs; all inputs should be named, otherwise errors will be raised


Method get_settings()

get current inputs

Usage
PipelineTools$get_settings(key, default = NULL, constraint)
Arguments
key

the input name; default is missing, i.e., to get all the settings

default

default value if not found

constraint

the constraint of the results; if input value is not from constraint, then only the first element of constraint will be returned.


Method read()

read intermediate variables

Usage
PipelineTools$read(var_names, ifnotfound = NULL, ...)
Arguments
var_names

the target names, can be obtained via x$target_table member; default is missing, i.e., to read all the intermediate variables

ifnotfound

variable default value if not found

...

other parameters passing to pipeline_read


Method run()

run the pipeline

Usage
PipelineTools$run(
  names = NULL,
  async = FALSE,
  as_promise = async,
  scheduler = c("none", "future", "clustermq"),
  type = c("smart", "callr", "vanilla"),
  envir = new.env(parent = globalenv()),
  callr_function = NULL,
  return_values = TRUE,
  ...
)
Arguments
names

pipeline variable names to calculate; default is to calculate all the targets

async

whether to run asynchronous in another process

as_promise

whether to return a PipelineResult instance

scheduler, type, envir, callr_function, return_values, ...

passed to pipeline_run if as_promise is true, otherwise these arguments will be passed to pipeline_run_bare


Method eval()

run the pipeline in order; unlike $run(), this method does not use the targets infrastructure, hence the pipeline results will not be stored, and the order of names will be respected.

Usage
PipelineTools$eval(
  names,
  env = parent.frame(),
  shortcut = FALSE,
  clean = TRUE,
  ...
)
Arguments
names

pipeline variable names to calculate; must be specified

env

environment to evaluate and store the results

shortcut

logical or characters; default is FALSE, meaning names and all the dependencies (if missing from env) will be evaluated; set to TRUE if only names are to be evaluated. When shortcut is a character vector, it should be a list of targets (including their ancestors) whose values can be assumed to be up-to-date, and the evaluation of those targets can be skipped.

clean

whether to evaluate without polluting env

...

passed to pipeline_eval


Method shared_env()

run the pipeline shared library in scripts starting with path R/shared

Usage
PipelineTools$shared_env(callr_function = callr::r)
Arguments
callr_function

either callr::r or NULL; when callr::r, the environment will be loaded in isolated R session and serialized back to the main session to avoid contaminating the main session environment; when NULL, the code will be sourced directly in current environment.


Method python_module()

get 'Python' module embedded in the pipeline

Usage
PipelineTools$python_module(
  type = c("info", "module", "shared", "exist"),
  must_work = TRUE
)
Arguments
type

return type, choices are 'info' (get basic information such as module path, default), 'module' (load module and return it), 'shared' (load a shared sub-module from the module, which is shared also in report script), and 'exist' (returns true or false on whether the module exists or not)

must_work

whether the module needs to be existed or not. If TRUE, the raise errors when the module does not exist; default is TRUE, ignored when type is 'exist'.


Method progress()

get progress of the pipeline

Usage
PipelineTools$progress(method = c("summary", "details"))
Arguments
method

either 'summary' or 'details'


Method attach()

attach pipeline tool to environment (internally used)

Usage
PipelineTools$attach(env)
Arguments
env

an environment


Method visualize()

visualize pipeline target dependency graph

Usage
PipelineTools$visualize(
  glimpse = FALSE,
  aspect_ratio = 2,
  node_size = 30,
  label_size = 40,
  ...
)
Arguments
glimpse

whether to glimpse the graph network or render the state

aspect_ratio

controls node spacing

node_size, label_size

size of nodes and node labels

...

passed to pipeline_visualize


Method target_ancestors()

a helper function to get target ancestors

Usage
PipelineTools$target_ancestors(names, skip_names = NULL)
Arguments
names

targets whose ancestor targets need to be queried

skip_names

targets that are assumed to be up-to-date, hence will be excluded, notice this exclusion is recursive, that means not only skip_names are excluded, but also their ancestors will be excluded from the result.


Method fork()

fork (copy) the current pipeline to a new directory

Usage
PipelineTools$fork(path, policy = "default")
Arguments
path

path to the new pipeline, a folder will be created there

policy

fork policy defined by module author, see text file 'fork-policy' under the pipeline directory; if missing, then default to avoid copying main.html and shared folder


Method fork_to_subject()

fork (copy) the current pipeline to a 'RAVE' subject

Usage
PipelineTools$fork_to_subject(
  subject,
  label = "NA",
  policy = "default",
  delete_old = FALSE,
  sanitize = TRUE
)
Arguments
subject

subject ID or instance in which pipeline will be saved

label

pipeline label describing the pipeline

policy

fork policy defined by module author, see text file 'fork-policy' under the pipeline directory; if missing, then default to avoid copying main.html and shared folder

delete_old

whether to delete old pipelines with the same label default is false

sanitize

whether to sanitize the registry at save. This will remove missing folders and import manually copied pipelines to the registry (only for the pipelines with the same name)


Method with_activated()

run code with pipeline activated, some environment variables and function behaviors might change under such condition (for example, targets package functions)

Usage
PipelineTools$with_activated(expr, quoted = FALSE, env = parent.frame())
Arguments
expr

expression to evaluate

quoted

whether expr is quoted; default is false

env

environment to run expr


Method clean()

clean all or part of the data store

Usage
PipelineTools$clean(
  destroy = c("all", "cloud", "local", "meta", "process", "preferences", "progress",
    "objects", "scratch", "workspaces"),
  ask = FALSE
)
Arguments
destroy, ask

see tar_destroy


Method save_data()

save data to pipeline data folder

Usage
PipelineTools$save_data(
  data,
  name,
  format = c("json", "yaml", "csv", "fst", "rds"),
  overwrite = FALSE,
  ...
)
Arguments
data

R object

name

the name of the data to save, must start with letters

format

serialize format, choices are 'json', 'yaml', 'csv', 'fst', 'rds'; default is 'json'. To save arbitrary objects such as functions or environments, use 'rds'

overwrite

whether to overwrite existing files; default is no

...

passed to saver functions


Method load_data()

load data from pipeline data folder

Usage
PipelineTools$load_data(
  name,
  error_if_missing = TRUE,
  default_if_missing = NULL,
  format = c("auto", "json", "yaml", "csv", "fst", "rds"),
  ...
)
Arguments
name

the name of the data

error_if_missing

whether to raise errors if the name is missing

default_if_missing

default values to return if the name is missing

format

the format of the data, default is automatically obtained from the file extension

...

passed to loader functions


Method set_preferences()

set persistent preferences from the pipeline. The preferences should not affect how pipeline is working, hence usually stores minor variables such as graphic options. Changing preferences will not invalidate pipeline cache.

Usage
PipelineTools$set_preferences(..., .list = NULL)
Arguments
..., .list

key-value pairs of initial preference values. The keys must start with 'global' or the module ID, followed by dot and preference type and names. For example 'global.graphics.continuous_palette' for setting palette colors for continuous heat-map; "global" means the settings should be applied to all 'RAVE' modules. The module-level preference, 'power_explorer.export.default_format' sets the default format for power-explorer export dialogue.

name

preference name, must contain only letters, digits, underscore, and hyphen, will be coerced to lower case (case-insensitive)


Method get_preferences()

get persistent preferences from the pipeline.

Usage
PipelineTools$get_preferences(
  keys,
  simplify = TRUE,
  ifnotfound = NULL,
  validator = NULL,
  ...
)
Arguments
keys

characters to get the preferences

simplify

whether to simplify the results when length of key is 1; default is true; set to false to always return a list of preferences

ifnotfound

default value when the key is missing

validator

NULL or function to validate the values; see 'Examples'

...

passed to validator if validator is a function

Examples
library(raveio)
if(interactive() && length(pipeline_list()) > 0) {
  pipeline <- pipeline("power_explorer")

  # set dummy preference
  pipeline$set_preferences("global.example.dummy_preference" = 1:3)

  # get preference
  pipeline$get_preferences("global.example.dummy_preference")

  # get preference with validator to ensure the value length to be 1
  pipeline$get_preferences(
    "global.example.dummy_preference",
    validator = function(value) {
      stopifnot(length(value) == 1)
    },
    ifnotfound = 100
  )

  pipeline$has_preferences("global.example.dummy_preference")
}


Method has_preferences()

whether pipeline has preference keys

Usage
PipelineTools$has_preferences(keys, ...)
Arguments
keys

characters name of the preferences

...

passed to internal methods


Method clone()

The objects of this class are cloneable with this method.

Usage
PipelineTools$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

See Also

pipeline

Examples

## ------------------------------------------------
## Method `PipelineTools$get_preferences`
## ------------------------------------------------


library(raveio)
if(interactive() && length(pipeline_list()) > 0) {
  pipeline <- pipeline("power_explorer")

  # set dummy preference
  pipeline$set_preferences("global.example.dummy_preference" = 1:3)

  # get preference
  pipeline$get_preferences("global.example.dummy_preference")

  # get preference with validator to ensure the value length to be 1
  pipeline$get_preferences(
    "global.example.dummy_preference",
    validator = function(value) {
      stopifnot(length(value) == 1)
    },
    ifnotfound = 100
  )

  pipeline$has_preferences("global.example.dummy_preference")
}

Calculate power baseline

Description

Calculate power baseline

Usage

power_baseline(
  x,
  baseline_windows,
  method = c("percentage", "sqrt_percentage", "decibel", "zscore", "sqrt_zscore"),
  units = c("Trial", "Frequency", "Electrode"),
  ...
)

## S3 method for class 'rave_prepare_power'
power_baseline(
  x,
  baseline_windows,
  method = c("percentage", "sqrt_percentage", "decibel", "zscore", "sqrt_zscore"),
  units = c("Frequency", "Trial", "Electrode"),
  electrodes,
  ...
)

## S3 method for class 'FileArray'
power_baseline(
  x,
  baseline_windows,
  method = c("percentage", "sqrt_percentage", "decibel", "zscore", "sqrt_zscore"),
  units = c("Frequency", "Trial", "Electrode"),
  filebase = NULL,
  ...
)

## S3 method for class 'array'
power_baseline(
  x,
  baseline_windows,
  method = c("percentage", "sqrt_percentage", "decibel", "zscore", "sqrt_zscore"),
  units = c("Trial", "Frequency", "Electrode"),
  ...
)

## S3 method for class 'ECoGTensor'
power_baseline(
  x,
  baseline_windows,
  method = c("percentage", "sqrt_percentage", "decibel", "zscore", "sqrt_zscore"),
  units = c("Trial", "Frequency", "Electrode"),
  filebase = NULL,
  hybrid = TRUE,
  ...
)

Arguments

x

R array, filearray, ECoGTensor, or 'rave_prepare_power' object created by prepare_subject_power.

baseline_windows

list of baseline window (intervals)

method

baseline method; choices are 'percentage', 'sqrt_percentage', 'decibel', 'zscore', 'sqrt_zscore'; see 'Details' in baseline_array

units

the unit of the baseline; see 'Details'

...

passed to other methods

electrodes

the electrodes to be included in baseline calculation; for power repository object produced by prepare_subject_power only; default is all available electrodes in each of signal_types

filebase

where to store the output; default is NULL and is automatically determined

hybrid

whether the array will be

Details

The arrays must be four-mode tensor and must have valid named dimnames. The dimension names must be 'Trial', 'Frequency', 'Time', 'Electrode', case sensitive.

The baseline_windows determines the baseline windows that are used to calculate time-points of baseline to be included. This can be one or more intervals and must pass the validation function validate_time_window.

The units determines the unit of the baseline. It can be one or more of 'Trial', 'Frequency', 'Electrode'. The default value is all of them, i.e., baseline for each combination of trial, frequency, and electrode. To share the baseline across trials, please remove 'Trial' from units. To calculate baseline that should be shared across electrodes (e.g. in some mini-electrodes), remove 'Electrode' from the units.

Value

Usually the same type as the input: for arrays, filearray, or ECoGTensor, the outputs are also the same type with the same dimensions; for 'rave_prepare_power' repositories, the results will be stored in its 'baselined' element; see 'Examples'.

Examples

## Not run: 
# The following code need to download additional demo data
# Please see https://rave.wiki/ for more details

library(raveio)
repo <- prepare_subject_power(
  subject = "demo/DemoSubject",
  time_windows = c(-1, 3),
  electrodes = c(14, 15))

##### Direct baseline on the repository
power_baseline(x = repo, method = "decibel",
               baseline_windows = list(c(-1, 0), c(2, 3)))
power_mean <- repo$power$baselined$collapse(
  keep = c(2,1), method = "mean")
image(power_mean, x = repo$time_points, y = repo$frequency,
      xlab = "Time (s)", ylab = "Frequency (Hz)",
      main = "Mean power over trial (Baseline: -1~0 & 2~3)")
abline(v = 0, lty = 2, col = 'blue')
text(x = 0, y = 20, "Aud-Onset", col = "blue", cex = 0.6)

##### Alternatively, baseline on electrode instances
baselined <- lapply(repo$power$data_list, function(inst) {
  re <- power_baseline(inst, method = "decibel",
                       baseline_windows = list(c(-1, 0), c(2, 3)))
  collapse2(re, keep = c(2,1), method = "mean")
})
power_mean2 <- (baselined[[1]] + baselined[[2]]) / 2

# Same with precision difference
max(abs(power_mean2 - power_mean)) < 1e-6



## End(Not run)

Prepare 'RAVE' single-subject data

Description

Prepare 'RAVE' single-subject data

Usage

prepare_subject_bare0(
  subject,
  electrodes,
  reference_name,
  ...,
  quiet = TRUE,
  repository_id = NULL
)

prepare_subject_bare(
  subject,
  electrodes,
  reference_name,
  ...,
  repository_id = NULL
)

prepare_subject_with_epoch(
  subject,
  electrodes,
  reference_name,
  epoch_name,
  time_windows,
  env = parent.frame(),
  ...
)

prepare_subject_with_blocks(
  subject,
  electrodes,
  reference_name,
  blocks,
  raw = FALSE,
  signal_type = "LFP",
  time_frequency = (!raw && signal_type == "LFP"),
  quiet = raw,
  env = parent.frame(),
  repository_id = NULL,
  ...
)

prepare_subject_phase(
  subject,
  electrodes,
  reference_name,
  epoch_name,
  time_windows,
  signal_type = c("LFP"),
  env = parent.frame(),
  verbose = TRUE,
  ...
)

prepare_subject_power(
  subject,
  electrodes,
  reference_name,
  epoch_name,
  time_windows,
  signal_type = c("LFP"),
  env = parent.frame(),
  verbose = TRUE,
  ...
)

prepare_subject_wavelet(
  subject,
  electrodes,
  reference_name,
  epoch_name,
  time_windows,
  signal_type = c("LFP"),
  env = parent.frame(),
  verbose = TRUE,
  ...
)

prepare_subject_raw_voltage_with_epoch(
  subject,
  electrodes,
  epoch_name,
  time_windows,
  ...,
  quiet = TRUE,
  repository_id = NULL
)

prepare_subject_voltage_with_epoch(
  subject,
  electrodes,
  epoch_name,
  time_windows,
  reference_name,
  ...,
  quiet = TRUE,
  repository_id = NULL
)

Arguments

subject

character of project and subject, such as "demo/YAB", or RAVESubject instance

electrodes

integer vector of electrodes, or a character that can be parsed by parse_svec

reference_name

reference name to be loaded

...

ignored

quiet

whether to quietly load the data

repository_id

used internally

epoch_name

epoch name to be loaded, or a RAVEEpoch instance

time_windows

a list of time windows that are relative to epoch onset time; need to pass the validation validate_time_window

env

environment to evaluate

blocks

one or more session blocks to load

raw

whether to load from original (before processing) data; if true, then time-frequency data will not be loaded.

signal_type

electrode signal type (length of one) to be considered; default is 'LFP'. This option rarely needs to change unless you really want to check the power data from other types. For other signal types, check SIGNAL_TYPES

time_frequency

whether to load time-frequency data when preparing block data

verbose

whether to show progress

Value

A fastmap2 (basically a list) of objects. Depending on the functions called, the following items may exist in the list:

subject

A RAVESubject instance

epoch_name

Same as input epoch_name

epoch

A RAVEEpoch instance

reference_name

Same as input reference_name

reference_table

A data frame of reference

electrode_table

A data frame of electrode information

frequency

A vector of frequencies

time_points

A vector of time-points

power_list

A list of power data of the electrodes

power_dimnames

A list of trial indices, frequencies, time points, and electrodes that are loaded


Enhanced progress with logger message

Description

For best performance, please install 'ravedash'. This function can replace progress2.

Usage

progress_with_logger(
  title,
  max = 1,
  ...,
  quiet = FALSE,
  session = shiny::getDefaultReactiveDomain(),
  shiny_auto_close = FALSE,
  outputId = NULL,
  log
)

Arguments

title, max, ..., quiet, session, shiny_auto_close

see progress2

outputId

will be used if package 'shidashi' is installed, otherwise will be ignored

log

function, NULL, or missing; default is missing, which will use logger function in the package 'ravedash', or cat2 if 'ravedash' is not installed. If log=NULL, then the message will be suppressed in 'shiny' applications. If a function provided, then the function will be called.

Value

A list, see progress2


Register 'CT' to 'MR' images via 'nipy' script

Description

Align 'CT' using nipy.algorithms.registration.histogram_registration.

Usage

py_nipy_coreg(
  ct_path,
  mri_path,
  clean_source = TRUE,
  inverse_target = TRUE,
  precenter_source = TRUE,
  smooth = 0,
  reg_type = c("rigid", "affine"),
  interp = c("pv", "tri"),
  similarity = c("crl1", "cc", "cr", "mi", "nmi", "slr"),
  optimizer = c("powell", "steepest", "cg", "bfgs", "simplex"),
  tol = 1e-04,
  dry_run = FALSE
)

cmd_run_nipy_coreg(
  subject,
  ct_path,
  mri_path,
  clean_source = TRUE,
  inverse_target = TRUE,
  precenter_source = TRUE,
  reg_type = c("rigid", "affine"),
  interp = c("pv", "tri"),
  similarity = c("crl1", "cc", "cr", "mi", "nmi", "slr"),
  optimizer = c("powell", "steepest", "cg", "bfgs", "simplex"),
  dry_run = FALSE,
  verbose = FALSE
)

Arguments

ct_path, mri_path

absolute paths to 'CT' and 'MR' image files

clean_source

whether to replace negative 'CT' values with zeros; default is true

inverse_target

whether to inverse 'MRI' color intensity; default is true

precenter_source

whether to adjust the 'CT' transform matrix before alignment, such that the origin of 'CT' is at the center of the volume; default is true. This option may avoid the case that 'CT' is too far-away from the 'MR' volume at the beginning of the optimization

smooth, interp, optimizer, tol

optimization parameters, see 'nipy' documentation for details.

reg_type

registration type, choices are 'rigid' or 'affine'

similarity

the cost function of the alignment; choices are 'crl1' ('L1' regularized correlation), 'cc' (correlation coefficient), 'cr' (correlation), 'mi' (mutual information), 'nmi' (normalized mutual information), 'slr' (likelihood ratio). In reality I personally find 'crl1' works best in most cases, though many tutorials suggest 'nmi'.

dry_run

whether to dry-run the script and to print out the command instead of executing the code; default is false

subject

'RAVE' subject

verbose

whether to verbose command; default is false

Value

Nothing is returned from the function. However, several files will be generated at the 'CT' path:

'ct_in_t1.nii'

aligned 'CT' image; the image is also re-sampled into 'MRI' space

'CT_IJK_to_MR_RAS.txt'

transform matrix from volume 'IJK' space in the original 'CT' to the 'RAS' anatomical coordinate in 'MR' scanner

'CT_RAS_to_MR_RAS.txt'

transform matrix from scanner 'RAS' space in the original 'CT' to 'RAS' in 'MR' scanner space


Load 'FreeSurfer' or 'AFNI/SUMA' brain from 'RAVE'

Description

Create 3D visualization of the brain and visualize with modern web browsers

Usage

rave_brain(
  subject,
  surfaces = "pial",
  use_141 = TRUE,
  recache = FALSE,
  clean_before_cache = FALSE,
  compute_template = FALSE,
  usetemplateifmissing = FALSE,
  include_electrodes = TRUE
)

Arguments

subject

character, list, or RAVESubject instance; for list or other objects, make sure subject$subject_id is a valid 'RAVE' subject 'ID'

surfaces

one or more brain surface types from "pial", "white", "smoothwm", "pial-outer-smoothed", etc.; check freesurfer_brain2

use_141

whether to use 'AFNI/SUMA' standard 141 brain

recache

whether to re-calculate cache; only should be used when the original 'FreeSurfer' or 'AFNI/SUMA' files are changed; such as new files are added

clean_before_cache

whether to clean the original cache before recache; only set it to be true if original cached files are corrupted

compute_template

whether to compute template mappings; useful when template mapping with multiple subjects are needed

usetemplateifmissing

whether to use template brain when the subject brain files are missing. If set to true, then a template (usually 'N27') brain will be displayed as an alternative solution, and electrodes will be rendered according to their 'MNI305' coordinates, or 'VertexNumber' if given.

include_electrodes

whether to include electrode in the model; default is true

Value

A 'threeBrain' instance if brain is found or usetemplateifmissing is set to true; otherwise returns NULL

Examples

# Please make sure DemoSubject is correctly installed
# The subject is ~1GB from Github

if(interactive()){
  brain <- rave_brain("demo/DemoSubject")

  if( !is.null(brain) ) { brain$plot() }

}

Find and execute external command-line tools

Description

Find and execute external command-line tools

Usage

normalize_commandline_path(
  path,
  type = c("dcm2niix", "freesurfer", "fsl", "afni", "others"),
  unset = NA
)

cmd_dcm2niix(error_on_missing = TRUE, unset = NA)

cmd_freesurfer_home(error_on_missing = TRUE, unset = NA)

cmd_fsl_home(error_on_missing = TRUE, unset = NA)

cmd_afni_home(error_on_missing = TRUE, unset = NA)

cmd_homebrew(error_on_missing = TRUE, unset = NA)

is_dry_run()

Arguments

path

path to normalize

type

type of command

unset

default to return if the command is not found

error_on_missing

whether to raise errors if command is missing

Value

Normalized path to the command, or unset if command is missing.


Returns a list of 'RAVE' directories

Description

This function is internally used and should not be called directly.

Usage

rave_directories(
  subject_code,
  project_name,
  blocks = NULL,
  .force_format = c("", "native", "BIDS")
)

Arguments

subject_code

'RAVE' subject code

project_name

'RAVE' project name

blocks

session or block names, optional

.force_format

format of the data, default is automatically detected.

Value

A list of directories


Export 'RAVE' data

Description

Export portable data for custom analyses.

Usage

rave_export(x, path, ...)

## Default S3 method:
rave_export(x, path, format = c("rds", "yaml", "json"), ...)

## S3 method for class 'rave_prepare_subject_raw_voltage_with_epoch'
rave_export(x, path, zip = FALSE, ...)

## S3 method for class 'rave_prepare_subject_voltage_with_epoch'
rave_export(x, path, zip = FALSE, ...)

## S3 method for class 'rave_prepare_power'
rave_export(x, path, zip = FALSE, ...)

Arguments

x

R object or 'RAVE' repositories

path

path to save to

...

passed to other methods

format

export format

zip

whether to zip the files

Value

Exported data path

Examples

x <- "my data"
path <- tempfile()
rave_export(x, path)

readRDS(path)

## Not run: 
  # Needs demo subject
  path <- tempfile()
  x <- prepare_subject_power("demo/DemoSubject")

  # Export power data to path
  rave_export(x, path)

## End(Not run)

Import data into 'rave' projects

Description

Import files with predefined structures. Supported file formats include 'Matlab', 'HDF5', 'EDF(+)', 'BrainVision' ('.eeg/.dat/.vhdr'). Supported file structures include 'rave' native structure and 'BIDS' (very limited) format. Please see https://openwetware.org/wiki/RAVE:ravepreprocess for tutorials.

Usage

rave_import(
  project_name,
  subject_code,
  blocks,
  electrodes,
  format,
  sample_rate,
  conversion = NA,
  data_type = "LFP",
  task_runs = NULL,
  add = FALSE,
  ...
)

Arguments

project_name

project name, for 'rave' native structure, this can be any character; for 'BIDS' format, this must be consistent with 'BIDS' project name. For subjects with multiple tasks, see Section "'RAVE' Project"

subject_code

subject code in character. For 'rave' native structure, this is a folder name under raw directory. For 'BIDS', this is subject label without "sub-" prefix

blocks

characters, for 'rave' native format, this is the folder names subject directory; for 'BIDS', this is session name with "ses-". Section "Block vs. Session" for different meaning of "blocks" in 'rave' and 'BIDS'

electrodes

integers electrode numbers

format

integer from 1 to 6, or character. For characters, you can get options by running names(IMPORT_FORMATS)

sample_rate

sample frequency, must be positive

conversion

physical unit conversion, choices are NA, V, mV, uV

data_type

electrode signal type; see SIGNAL_TYPES

task_runs

for 'BIDS' formats only, see Section "Block vs. Session"

add

whether to add electrodes. If set to true, then only new electrodes are allowed to be imported, blocks will be ignored and trying to import electrodes that have been imported will still result in error.

...

other parameters

Value

None

'RAVE' Project

A 'rave' project can be very flexible. A project can refer to a task, a research objective, or "arbitrarily" as long as you find common research interests among subjects. One subject can appear in multiple projects with different blocks, hence project_name should be objective-based. There is no concept of "project" in 'rave' raw directory. When importing data, you choose subset of blocks from subjects forming a project.

When importing 'BIDS' data into 'rave', project_name must be consistent with 'BIDS' project name as a compromise. Once imported, you may change the project folder name in imported rave data directory to other names. Because once raw traces are imported, 'rave' data will become self-contained and 'BIDS' data are no longer required for analysis. This naming inconsistency will also be ignored.

Block vs. Session

'rave' and 'BIDS' have different definitions for a "chunk" of signals. In 'rave', we use "block". it means combination of session (days), task, and run, i.e. a block of continuous signals captured. Raw data files are supposed to be stored in file hierarchy of <raw-root>/<subject_code>/<block>/<datafiles>. In 'BIDS', sessions, tasks, and runs are separated, and only session names are indicated under subject folder. Because some previous compatibility issues, argument 'block' refers to direct folder names under subject directories. This means when importing data from 'BIDS' format, block argument needs to be session names to comply with 'subject/block' structure, and there is an additional mandatory argument task_runs especially designed for 'BIDS' format.

For 'rave' native raw data format, block will be as-is once imported.
For 'BIDS' format, task_runs will be treated as blocks once imported.

File Formats

Following file structure. Here use project "demo" and subject "YAB" and block "008"), electrode 14 as an example.

format=1, or ".mat/.h5 file per electrode per block"

folder <raw>/YAB/008 contains 'Matlab' or 'HDF5' files per electrode. Data file name should look like "xxx_14.mat"

format=2, or "Single .mat/.h5 file per block"

<raw>/YAB/008 contains only one 'Matlab' or 'HDF5' file. Data within the file should be a 2-dimensional matrix, where the column 14 is signal recorded from electrode 14

format=3, or "Single EDF(+) file per block"

<raw>/YAB/008 contains only one 'edf' file

format=4, or "Single BrainVision file (.vhdr+.eeg, .vhdr+.dat) per block"

<raw>/YAB/008 contains only one 'vhdr' file, and the data file must be inferred from the header file

format=5, or "BIDS & EDF(+)"

<bids>/demo/sub-YAB/ses-008/ must contains *_electrodes.tsv, each run must have channel file. The channel files and electrode file must be consistent in names.
Argument task_runs is mandatory, characters, combination of session, task name, and run number. For example, a task header file in BIDS with name 'sub-YAB_ses-008_task-visual_run-01_ieeg.edf' has task_runs name as '008-visual-01', where the first '008' refers to session, 'visual' is task name, and the second '01' is run number.

format=6, or "BIDS & BrainVision (.vhdr+.eeg, .vhdr+.dat)"

Same as previous format "BIDS & EDF(+)", but data files have 'BrainVision' formats.


Compatibility support for 'RAVE' 1.0 format

Description

Convert 'RAVE' subject generated by 2.0 pipeline such that 1.0 modules can use the data. The subject must have valid electrodes. The data must be imported, with time-frequency transformed to pass the validation before converting.

Usage

rave_subject_format_conversion(subject, verbose = TRUE, ...)

Arguments

subject

'RAVE' subject characters, such as 'demo/YAB', or a subject instance generated from RAVESubject

verbose

whether to verbose the messages

...

ignored, reserved for future use

Value

Nothing


'RAVE' pipeline functions

Description

Utility functions for 'RAVE' pipelines, currently designed for internal development use. The infrastructure will be deployed to 'RAVE' in the future to facilitate the "self-expanding" aim. Please check the official 'RAVE' website.

Usage

pipeline_root(root_path, temporary = FALSE)

pipeline_list(root_path = pipeline_root())

pipeline_find(name, root_path = pipeline_root())

pipeline_attach(name, root_path = pipeline_root())

pipeline_run(
  pipe_dir = Sys.getenv("RAVE_PIPELINE", "."),
  scheduler = c("none", "future", "clustermq"),
  type = c("smart", "callr", "vanilla"),
  envir = new.env(parent = globalenv()),
  callr_function = NULL,
  names = NULL,
  async = FALSE,
  check_interval = 0.5,
  progress_quiet = !async,
  progress_max = NA,
  progress_title = "Running pipeline",
  return_values = TRUE,
  ...
)

pipeline_clean(
  pipe_dir = Sys.getenv("RAVE_PIPELINE", "."),
  destroy = c("all", "cloud", "local", "meta", "process", "preferences", "progress",
    "objects", "scratch", "workspaces"),
  ask = FALSE
)

pipeline_run_bare(
  pipe_dir = Sys.getenv("RAVE_PIPELINE", "."),
  scheduler = c("none", "future", "clustermq"),
  type = c("smart", "callr", "vanilla"),
  envir = new.env(parent = globalenv()),
  callr_function = NULL,
  names = NULL,
  return_values = TRUE,
  ...
)

load_targets(..., env = NULL)

pipeline_target_names(pipe_dir = Sys.getenv("RAVE_PIPELINE", "."))

pipeline_debug(
  quick = TRUE,
  env = parent.frame(),
  pipe_dir = Sys.getenv("RAVE_PIPELINE", "."),
  skip_names
)

pipeline_dep_targets(
  names,
  skip_names = NULL,
  pipe_dir = Sys.getenv("RAVE_PIPELINE", ".")
)

pipeline_eval(
  names,
  env = new.env(parent = parent.frame()),
  pipe_dir = Sys.getenv("RAVE_PIPELINE", "."),
  settings_path = file.path(pipe_dir, "settings.yaml"),
  shortcut = FALSE
)

pipeline_visualize(
  pipe_dir = Sys.getenv("RAVE_PIPELINE", "."),
  glimpse = FALSE,
  targets_only = TRUE,
  shortcut = FALSE,
  zoom_speed = 0.1,
  ...
)

pipeline_progress(
  pipe_dir = Sys.getenv("RAVE_PIPELINE", "."),
  method = c("summary", "details", "custom"),
  func = targets::tar_progress_summary
)

pipeline_fork(
  src = Sys.getenv("RAVE_PIPELINE", "."),
  dest = tempfile(pattern = "rave_pipeline_"),
  policy = "default",
  activate = FALSE,
  ...
)

pipeline_build(pipe_dir = Sys.getenv("RAVE_PIPELINE", "."))

pipeline_read(
  var_names,
  pipe_dir = Sys.getenv("RAVE_PIPELINE", "."),
  branches = NULL,
  ifnotfound = NULL,
  dependencies = c("none", "ancestors_only", "all"),
  simplify = TRUE,
  ...
)

pipeline_vartable(
  pipe_dir = Sys.getenv("RAVE_PIPELINE", "."),
  targets_only = TRUE,
  complete_only = FALSE,
  ...
)

pipeline_hasname(var_names, pipe_dir = Sys.getenv("RAVE_PIPELINE", "."))

pipeline_watch(
  pipe_dir = Sys.getenv("RAVE_PIPELINE", "."),
  targets_only = TRUE,
  ...
)

pipeline_create_template(
  root_path,
  pipeline_name,
  overwrite = FALSE,
  activate = TRUE,
  template_type = c("rmd", "r", "rmd-bare", "rmd-scheduler")
)

pipeline_create_subject_pipeline(
  subject,
  pipeline_name,
  overwrite = FALSE,
  activate = TRUE,
  template_type = c("rmd", "r")
)

pipeline_description(file)

pipeline_load_extdata(
  name,
  format = c("auto", "json", "yaml", "csv", "fst", "rds"),
  error_if_missing = TRUE,
  default_if_missing = NULL,
  pipe_dir = Sys.getenv("RAVE_PIPELINE", "."),
  ...
)

pipeline_save_extdata(
  data,
  name,
  format = c("json", "yaml", "csv", "fst", "rds"),
  overwrite = FALSE,
  pipe_dir = Sys.getenv("RAVE_PIPELINE", "."),
  ...
)

pipeline_shared(
  pipe_dir = Sys.getenv("RAVE_PIPELINE", "."),
  callr_function = callr::r
)

pipeline_set_preferences(
  ...,
  .list = NULL,
  .pipe_dir = Sys.getenv("RAVE_PIPELINE", "."),
  .preference_instance = NULL
)

pipeline_get_preferences(
  keys,
  simplify = TRUE,
  ifnotfound = NULL,
  validator = NULL,
  ...,
  .preference_instance = NULL
)

pipeline_has_preferences(keys, ..., .preference_instance = NULL)

Arguments

root_path

the root directory for pipeline templates

temporary

whether not to save paths to current pipeline root registry. Set this to TRUE when importing pipelines from subject pipeline folders

name, pipeline_name

the pipeline name to create; usually also the folder

pipe_dir, .pipe_dir

where the pipeline directory is; can be set via system environment Sys.setenv("RAVE_PIPELINE"=...)

scheduler

how to schedule the target jobs: default is 'none', which is sequential. If you have multiple heavy-weighted jobs that can be scheduled at the same time, you can choose 'future' or 'clustermq'

type

how the pipeline should be executed; current choices are "smart" to enable 'future' package if possible, 'callr' to use r, or 'vanilla' to run everything sequentially in the main session.

callr_function

function that will be passed to tar_make; will be forced to be NULL if type='vanilla', or r if type='callr'

names

the names of pipeline targets that are to be executed; default is NULL, which runs all targets; use pipeline_target_names to check all your available target names.

async

whether to run pipeline without blocking the main session

check_interval

when running in background (non-blocking mode), how often to check the pipeline

progress_title, progress_max, progress_quiet

control the progress, see progress2.

return_values

whether to return pipeline target values; default is true; only works in pipeline_run_bare and will be ignored by pipeline_run

..., .list

other parameters, targets, etc.

destroy

what part of data repository needs to be cleaned

ask

whether to ask

env, envir

environment to execute the pipeline

quick

whether to skip finished targets to save time

skip_names

hint of target names to fast skip provided they are up-to-date; only used when quick=TRUE. If missing, then skip_names will be automatically determined

settings_path

path to settings file name within subject's pipeline path

shortcut

whether to display shortcut targets

glimpse

whether to hide network status when visualizing the pipelines

targets_only

whether to return the variable table for targets only; default is true

zoom_speed

zoom speed when visualizing the pipeline dependence

method

how the progress should be presented; choices are "summary", "details", "custom". If custom method is chosen, then func will be called

func

function to call when reading customized pipeline progress; default is tar_progress_summary

src, dest

pipeline folder to copy the pipeline script from and to

policy

fork policy defined by module author, see text file 'fork-policy' under the pipeline directory; if missing, then default to avoid copying main.html and shared folder

activate

whether to activate the new pipeline folder from dest; default is false

var_names

variable name to fetch or to check

branches

branch to read from; see tar_read

ifnotfound

default values to return if variable is not found

dependencies

whether to load dependent targets, choices are 'none' (default, only load targets specified by names), 'ancestors_only' (load all but the ancestors targets), and 'all' (both targets and ancestors)

simplify

whether to simplify the output

complete_only

whether only to show completed and up-to-date target variables; default is false

overwrite

whether to overwrite existing pipeline; default is false so users can double-check; if true, then existing pipeline, including the data will be erased

template_type

which template type to create; choices are 'r' or 'rmd'

subject

character indicating valid 'RAVE' subject ID, or RAVESubject instance

file

path to the 'DESCRIPTION' file under the pipeline folder, or pipeline collection folder that contains the pipeline information, structures, dependencies, etc.

format

format of the extended data, default is 'json', other choices are 'yaml', 'fst', 'csv', 'rds'

error_if_missing, default_if_missing

what to do if the extended data is not found

data

extended data to be saved

.preference_instance

internally used

keys

preference keys

validator

NULL or function to validate values

Value

pipeline_root

the root directories of the pipelines

pipeline_list

the available pipeline names under pipeline_root

pipeline_find

the path to the pipeline

pipeline_run

a PipelineResult instance

load_targets

a list of targets to build

pipeline_target_names

a vector of characters indicating the pipeline target names

pipeline_visualize

a widget visualizing the target dependence structure

pipeline_progress

a table of building progress

pipeline_fork

a normalized path of the forked pipeline directory

pipeline_read

the value of corresponding var_names, or a named list if var_names has more than one element

pipeline_vartable

a table of summaries of the variables; can raise errors if pipeline has never been executed

pipeline_hasname

logical, whether the pipeline has variable built

pipeline_watch

a basic shiny application to monitor the progress

pipeline_description

the list of descriptions of the pipeline or pipeline collection


Validate raw files in 'rave' directory

Description

Validate subjects and returns whether the subject can be imported into 'rave'

Usage

validate_raw_file(
  subject_code,
  blocks,
  electrodes,
  format,
  data_type = c("continuous"),
  ...
)

IMPORT_FORMATS

Arguments

subject_code

subject code, direct folder under 'rave' raw data path

blocks

block character, direct folder under subject folder. For raw files following 'BIDS' convention, see details

electrodes

electrodes to verify

format

integer or character. For characters, run names(IMPORT_FORMATS)

data_type

currently only support continuous type of signals

...

other parameters used if validating 'BIDS' format; see details.

Format

An object of class list of length 7.

Details

Six types of raw file structures are supported. They can be basically classified into two categories: 'rave' native raw structure and 'BIDS-iEEG' structure.

In 'rave' native structure, subject folders are stored within the root directory, which can be obtained via raveio_getopt('raw_data_dir'). Subject directory is the subject code. Inside of subject folder are block files. In 'rave', term 'block' is the combination of session, task, and run. Within each block, there should be 'iEEG' data files.

In 'BIDS-iEEG' format, the root directory can be obtained via raveio_getopt('bids_data_dir'). 'BIDS' root folder contains project folders. This is unlike 'rave' native raw data format. Subject folders are stored within the project directories. The subject folders start with 'sub-'. Within subject folder, there are session folders with prefix 'ses-'. Session folders are optional. 'iEEG' data is stored in 'ieeg' folder under the session/subject folder. 'ieeg' folder should contain at least

electrodes.tsv

sub-<label>*_electrodes.tsv

'iEEG' description

sub-<label>*_task-<label>_run-<index>_ieeg.json

'iEEG' data file

sub-<label>*_task-<label>_run-<index>_ieeg.<ext>, in current 'rave', only extensions '.vhdr+.eeg/.dat' ('BrainVision') or 'EDF' (or plus) are supported.

When format is 'BIDS', project_name must be specified.

The following formats are supported:

'.mat/.h5 file per electrode per block'

'rave' native raw format, each block folder contains multiple 'Matlab' or 'HDF5' files. Each file corresponds to a channel/electrode. File names should follow 'xxx001.mat' or 'xxx001.h5'. The numbers before the extension are channel numbers.

'Single .mat/.h5 file per block'

'rave' native raw format, each block folder contains only one 'Matlab' or 'HDF5' file. The file name can be arbitrary, but extension must be either '.mat' or '.h5'. Within the file there should be a matrix containing all the data. The short dimension of the matrix will be channels, and larger side of the dimension corresponds to the time points.

'Single EDF(+) file per block'

'rave' native raw format, each block folder contains only one '.edf' file.

'Single BrainVision file (.vhdr+.eeg, .vhdr+.dat) per block'

'rave' native raw format, each block folder contains only two files. The first file is header '.vhdr' file. It contains all meta information. The second is either '.eeg' or '.dat' file containing the body, i.e. signal entries.

'BIDS & EDF(+)'

'BIDS' format. The data file should have '.edf' extension

'BIDS & BrainVision (.vhdr+.eeg, .vhdr+.dat)'

'BIDS' format. The data file should have '.vhdr'+'.eeg/.dat' extensions

Value

logical true or false whether the directory is valid. Attributes containing error reasons or snapshot of the data. The attributes might be:

snapshot

description of data found if passing the validation

valid_run_names

For 'BIDS' format, valid session+task+run name if passing the validation

reason

named list where the names are the reason why validation fails and values are corresponding sessions or electrodes or both.


Install and configure 'RAVE' server as background service using shiny-server

Description

Works on 'Linux' and 'Mac' only.

Usage

rave_server_install(
  url = "https://github.com/rstudio/shiny-server/archive/refs/tags/v1.5.18.987.zip"
)

rave_server_configure(
  ports = 17283,
  user = Sys.info()[["user"]],
  rave_version = c("1", "2")
)

Arguments

url

'URL' to shiny-server 'ZIP' file to download

ports

integer vectors or character, indicating the port numbers to host 'RAVE' instances a valid port must be within the range from 1024 to 65535.

user

user to run the service as; default is the login user

rave_version

internally used; might be deprecated in the future

Value

nothing

Examples

## Not run: 

# OS-specific. Please install R package `rpymat` first

# Install rave-server
rave_server_install()

# Let port 17283-17290 to host RAVE instance
rave_server_configure(ports = "17283-17290")


## End(Not run)

'RAVE' code snippets

Description

Run snippet code

Usage

update_local_snippet(force = TRUE)

load_snippet(topic, local = TRUE)

Arguments

force

whether to force updating the snippets; default is true

topic

snippet topic

local

whether to use local snippets first before requesting online repository

Value

'load_snippet' returns snippet as a function, others return nothing

Examples

if(!is_on_cran()) {

  update_local_snippet()
  snippet <- load_snippet("dummy-snippet")

  # Read snippet documentation
  print(snippet)

  # Run snippet as a function
  snippet("this is an input")
}

Abstract definition of electrode class in RAVE

Description

This class is not intended for direct use. Please create new child classes and implement some key methods.

Value

If simplify is enabled, and only one block is loaded, then the result will be a vector (type="voltage") or a matrix (others), otherwise the result will be a named list where the names are the blocks.

Public fields

subject

subject instance (RAVESubject)

number

integer stands for electrode number or reference ID

reference

reference electrode, either NULL for no reference or an electrode instance inherits RAVEAbstarctElectrode

epoch

a RAVEEpoch instance

Active bindings

type

signal type of the electrode, such as 'LFP', 'Spike', and 'EKG'; default is 'Unknown'

power_enabled

whether the electrode can be used in power analyses such as frequency, or frequency-time analyses; this usually requires transforming the electrode raw voltage signals using signal processing methods such as 'Fourier', 'wavelet', 'Hilbert', 'multi-taper', etc. If an electrode has power data, then it's power data can be loaded via prepare_subject_power method.

is_reference

whether this instance is a reference electrode

location

location type of the electrode, see LOCATION_TYPES for details

exists

whether electrode exists in subject

preprocess_file

path to preprocess 'HDF5' file

power_file

path to power 'HDF5' file

phase_file

path to phase 'HDF5' file

voltage_file

path to voltage 'HDF5' file

reference_name

reference electrode name

epoch_name

current epoch name

cache_root

run-time cache path; NA if epoch or trial intervals are missing

trial_intervals

trial intervals relative to epoch onset

Methods

Public methods


Method new()

constructor

Usage
RAVEAbstarctElectrode$new(subject, number, quiet = FALSE)
Arguments
subject

character or RAVESubject instance

number

current electrode number or reference ID

quiet

reserved, whether to suppress warning messages


Method set_reference()

set reference for instance

Usage
RAVEAbstarctElectrode$set_reference(reference)
Arguments
reference

NULL or RAVEAbstarctElectrode instance instance


Method set_epoch()

set epoch instance for the electrode

Usage
RAVEAbstarctElectrode$set_epoch(epoch)
Arguments
epoch

characters or RAVEEpoch instance. For characters, make sure "epoch_<name>.csv" is in meta folder.


Method clear_cache()

method to clear cache on hard drive

Usage
RAVEAbstarctElectrode$clear_cache(...)
Arguments
...

implemented by child instances


Method clear_memory()

method to clear memory

Usage
RAVEAbstarctElectrode$clear_memory(...)
Arguments
...

implemented by child instances


Method load_data()

method to load electrode data

Usage
RAVEAbstarctElectrode$load_data(type)
Arguments
type

data type such as "power", "phase", "voltage", "wavelet-coefficient", or others depending on child class implementations


Method load_blocks()

load electrode block-wise data (with reference), useful when epoch is absent

Usage
RAVEAbstarctElectrode$load_blocks(blocks, type, simplify = TRUE)
Arguments
blocks

session blocks

type

data type such as "power", "phase", "voltage", "wavelet-coefficient".

simplify

whether to simplify the result


Method clone()

The objects of this class are cloneable with this method.

Usage
RAVEAbstarctElectrode$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## Not run: 

# To run this example, please download demo subject (~700 MB) from
# https://github.com/beauchamplab/rave/releases/tag/v0.1.9-beta

generator <- RAVEAbstarctElectrode

# load demo subject electrode 14
e <- generator$new("demo/DemoSubject", number = 14)

# set epoch
e$subject$epoch_names
e$set_epoch("auditory_onset")
head(e$epoch$table)

# set epoch range (-1 to 2 seconds relative to onset)
e$trial_intervals <- c(-1,2)
# or to set multiple ranges
e$trial_intervals <- list(c(-2,-1), c(0, 2))

# set reference
e$subject$reference_names
reference_table <- e$subject$meta_data(
  meta_type = "reference",
  meta_name = "default")
ref_name <- subset(reference_table, Electrode == 14)[["Reference"]]

# the reference is CAR type, mean of electrode 13-16,24
ref_name

# load & set reference
ref <- generator$new(e$subject, ref_name)
e$set_reference(ref)


## End(Not run)

Definition for epoch class

Description

Trial epoch, contains the following information: Block experiment block/session string; Time trial onset within that block; Trial trial number; Condition trial condition. Other optional columns are Event_xxx (starts with "Event"). See https://openwetware.org/wiki/RAVE:Epoching or more details.

Value

self$table

If event is one of "trial onset", "default", "", or NULL, then the result will be "Time" column; if the event is found, then return will be the corresponding event column. When the event is not found and missing is "error", error will be raised; default is to return "Time" column, as it's trial onset and is mandatory.

If condition_type is one of "default", "", or NULL, then the result will be "Condition" column; if the condition type is found, then return will be the corresponding condition type column. When the condition type is not found and missing is "error", error will be raised; default is to return "Condition" column, as it's the default and is mandatory.

Public fields

name

epoch name, character

subject

RAVESubject instance

data

a list of trial information, internally used

table

trial epoch table

.columns

epoch column names, internally used

Active bindings

columns

columns of trial table

n_trials

total number of trials

trials

trial numbers

available_events

available events other than trial onset

available_condition_type

available condition type other than the default

Methods

Public methods


Method new()

constructor

Usage
RAVEEpoch$new(subject, name)
Arguments
subject

RAVESubject instance or character

name

character, make sure "epoch_<name>.csv" is in meta folder


Method trial_at()

get ith trial

Usage
RAVEEpoch$trial_at(i, df = TRUE)
Arguments
i

trial number

df

whether to return as data frame or a list


Method update_table()

manually update table field

Usage
RAVEEpoch$update_table()

Method set_trial()

set one trial

Usage
RAVEEpoch$set_trial(Block, Time, Trial, Condition, ...)
Arguments
Block

block string

Time

time in second

Trial

positive integer, trial number

Condition

character, trial condition

...

other key-value pairs corresponding to other optional columns


Method get_event_colname()

Get epoch column name that represents the desired event

Usage
RAVEEpoch$get_event_colname(
  event = "",
  missing = c("warning", "error", "none")
)
Arguments
event

a character string of the event, see $available_events for all available events; set to "trial onset", "default", or blank to use the default

missing

what to do if event is missing; default is to warn


Method get_condition_colname()

Get condition column name that represents the desired condition type

Usage
RAVEEpoch$get_condition_colname(
  condition_type,
  missing = c("warning", "error", "none")
)
Arguments
condition_type

a character string of the condition type, see $available_condition_type for all available condition types; set to "default" or blank to use the default

missing

what to do if condition type is missing; default is to warn if the condition column is not found.


Method clone()

The objects of this class are cloneable with this method.

Usage
RAVEEpoch$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

# Please download DemoSubject ~700MB from
# https://github.com/beauchamplab/rave/releases/tag/v0.1.9-beta

## Not run: 

# Load meta/epoch_auditory_onset.csv from subject demo/DemoSubject
epoch <-RAVEEpoch$new(subject = 'demo/DemoSubject',
                      name = 'auditory_onset')

# first several trials
head(epoch$table)

# query specific trial
old_trial1 <- epoch$trial_at(1)

# Create new trial or change existing trial
epoch$set_trial(Block = '008', Time = 10,
                Trial = 1, Condition = 'AknownVmeant')
new_trial1 <- epoch$trial_at(1)

# Compare new and old trial 1
rbind(old_trial1, new_trial1)

# To get updated trial table, must update first
epoch$update_table()
head(epoch$table)


## End(Not run)

The constant variables

Description

The constant variables

Usage

SIGNAL_TYPES

LOCATION_TYPES

MNI305_to_MNI152

YAEL_IMAGE_TYPES

PIPELINE_FORK_PATTERN

Format

An object of class character of length 6.

An object of class character of length 5.

An object of class matrix (inherits from array) with 4 rows and 4 columns.

An object of class character of length 10.

An object of class character of length 1.

Details

SIGNAL_TYPES has the following options: 'LFP', 'Spike', 'EKG', 'Audio', 'Photodiode', or 'Unknown'. As of 'raveio' 0.0.6, only 'LFP' (see LFP_electrode) signal type is supported.

LOCATION_TYPES is a list of the electrode location types: 'iEEG' (this includes the next two), 'sEEG' (stereo), 'ECoG' (surface), 'EEG' (scalp), 'Others'. See field 'location' in RAVEAbstarctElectrode

MNI305_to_MNI152 is a 4-by-4 matrix converting 'MNI305' coordinates to 'MNI152' space. The difference of these two spaces is: 'MNI305' is an average of 305 human subjects, while 'MNI152' is the average of 152 people. These two coordinates differs slightly. While most of the 'MNI' coordinates reported by 'RAVE' and 'FreeSurfer' are in the 'MNI305' space, many other programs are expecting 'MNI152' coordinates.


Set/Get 'raveio' option

Description

Persist settings on local configuration file

Usage

raveio_setopt(key, value, .save = TRUE)

raveio_resetopt(all = FALSE)

raveio_getopt(key, default = NA, temp = TRUE)

raveio_confpath(cfile = "settings.yaml")

Arguments

key

character, option name

value

character or logical of length 1, option value

.save

whether to save to local drive, internally used to temporary change option. Not recommended to use it directly.

all

whether to reset all non-default keys

default

is key not found, return default value

temp

when saving, whether the key-value pair should be considered temporary, a temporary settings will be ignored when saving; when getting options, setting temp to false will reveal the actual settings.

cfile

file name in configuration path

Details

raveio_setopt stores key-value pair in local path. The values are persistent and shared across multiple sessions. There are some read-only keys such as "session_string". Trying to set those keys will result in error.

The following keys are reserved by 'RAVE':

data_dir

Directory path, where processed data are stored; default is at home directory, folder ~/rave_data/data_dir

raw_data_dir

Directory path, where raw data files are stored, mainly the original signal files and imaging files; default is at home directory, folder ~/rave_data/raw_dir

max_worker

Maximum number of CPU cores to use; default is one less than the total number of CPU cores

mni_template_root

Directory path, where 'MNI' templates are stored

raveio_getopt returns value corresponding to the keys. If key is missing, the whole option will be returned.

If set all=TRUE, raveio_resetopt resets all keys including non-standard ones. However "session_string" will never reset.

Value

raveio_setopt returns modified value; raveio_resetopt returns current settings as a list; raveio_confpath returns absolute path for the settings file; raveio_getopt returns the settings value to the given key, or default if not found.

See Also

R_user_dir


Defines 'RAVE' subject class for meta analyses

Description

R6 class definition

Value

data frame

Super class

raveio::RAVESubject -> RAVEMetaSubject

Active bindings

project

project instance of current subject; see RAVEProject

project_name

character string of project name

subject_code

character string of subject code

subject_id

subject ID: "project/subject"

path

subject root path

rave_path

'rave' directory under subject root path

meta_path

meta data directory for current subject

freesurfer_path

'FreeSurfer' directory for current subject. If no path exists, values will be NA

preprocess_path

preprocess directory under subject 'rave' path

data_path

data directory under subject 'rave' path

cache_path

path to 'FST' copies under subject 'data' path

pipeline_path

path to pipeline scripts under subject's folder

note_path

path that stores 'RAVE' related subject notes

epoch_names

possible epoch names

reference_names

possible reference names

reference_path

reference path under 'rave' folder

preprocess_settings

preprocess instance; see RAVEPreprocessSettings

blocks

subject experiment blocks in current project

electrodes

all electrodes, no matter excluded or not

raw_sample_rates

voltage sample rate

power_sample_rate

power spectrum sample rate

has_wavelet

whether electrodes have wavelet transforms

notch_filtered

whether electrodes are Notch-filtered

electrode_types

electrode signal types

Methods

Public methods

Inherited methods

Method print()

override print method

Usage
RAVEMetaSubject$print(...)
Arguments
...

ignored


Method new()

constructor

Usage
RAVEMetaSubject$new(project_name, subject_code = NULL, strict = FALSE)
Arguments
project_name

character project name

subject_code

character subject code

strict

whether to check if subject folders exist


Method meta_data()

get subject meta data located in "meta/" folder

Usage
RAVEMetaSubject$meta_data(
  meta_type = c("electrodes", "frequencies", "time_points", "epoch", "references"),
  meta_name = "default"
)
Arguments
meta_type

choices are 'electrodes', 'frequencies', 'time_points', 'epoch', 'references'

meta_name

if meta_type='epoch', read in 'epoch_<meta_name>.csv'; if meta_type='references', read in 'reference_<meta_name>.csv'.


Method clone()

The objects of this class are cloneable with this method.

Usage
RAVEMetaSubject$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

See Also

load_meta2


Defines preprocess configurations

Description

R6 class definition

Value

list of electrode type, number, etc.

NULL when no channel is composed. When flat is TRUE, a data frame of weights with the columns composing electrode channel numbers, composed channel number, and corresponding weights; if flat is FALSE, then a weight matrix;

Public fields

current_version

current configuration setting version

path

settings file path

backup_path

alternative back up path for redundancy checks

data

list of raw configurations, internally used only

subject

RAVESubject instance

read_only

whether the configuration should be read-only, not yet implemented

Active bindings

version

configure version of currently stored files

old_version

whether settings file is old format

blocks

experiment blocks

electrodes

electrode numbers

sample_rates

voltage data sample rate

notch_filtered

whether electrodes are notch filtered

has_wavelet

whether each electrode has wavelet transforms

data_imported

whether electrodes are imported

data_locked

whether electrode, blocks and sample rate are locked? usually when an electrode is imported into 'rave', that electrode is locked

electrode_locked

whether electrode is imported and locked

electrode_composed

composed electrode channels, not actual physically contacts, but is generated from those physically ones

wavelet_params

wavelet parameters

notch_params

Notch filter parameters

electrode_types

electrode signal types

@freeze_blocks

whether to free block, internally used

@freeze_lfp_ecog

whether to freeze electrodes that record 'LFP' signals, internally used

@lfp_ecog_sample_rate

'LFP' sample rates, internally used

all_blocks

characters, all possible blocks even not included in some projects

raw_path

raw data path

raw_path_type

raw data path type, 'native' or 'bids'

Methods

Public methods


Method new()

constructor

Usage
RAVEPreprocessSettings$new(subject, read_only = TRUE)
Arguments
subject

character or RAVESubject instance

read_only

whether subject should be read-only (not yet implemented)


Method valid()

whether configuration is valid or not

Usage
RAVEPreprocessSettings$valid()

Method has_raw()

whether raw data folder exists

Usage
RAVEPreprocessSettings$has_raw()

Method set_blocks()

set blocks

Usage
RAVEPreprocessSettings$set_blocks(blocks, force = FALSE)
Arguments
blocks

character, combination of session task and run

force

whether to ignore checking. Only used when data structure is not native, for example, 'BIDS' format


Method set_electrodes()

set electrodes

Usage
RAVEPreprocessSettings$set_electrodes(
  electrodes,
  type = SIGNAL_TYPES,
  add = FALSE
)
Arguments
electrodes

integer vectors

type

signal type of electrodes, see SIGNAL_TYPES

add

whether to add to current settings


Method set_sample_rates()

set sample frequency

Usage
RAVEPreprocessSettings$set_sample_rates(srate, type = SIGNAL_TYPES)
Arguments
srate

sample rate, must be positive number

type

electrode type to set sample rate. In 'rave', all electrodes with the same signal type must have the same sample rate.


Method migrate()

convert old format to new formats

Usage
RAVEPreprocessSettings$migrate(force = FALSE)
Arguments
force

whether to force migrate and save settings


Method electrode_info()

get electrode information

Usage
RAVEPreprocessSettings$electrode_info(electrode)
Arguments
electrode

integer


Method save()

save settings to hard disk

Usage
RAVEPreprocessSettings$save()

Method get_compose_weights()

get weights of each composed channels

Usage
RAVEPreprocessSettings$get_compose_weights(flat = TRUE)
Arguments
flat

whether to flatten the data frame; default is true

Examples

# The following example require downloading demo subject (~700 MB) from
# https://github.com/beauchamplab/rave/releases/tag/v0.1.9-beta

## Not run: 

conf <- RAVEPreprocessSettings$new(subject = 'demo/DemoSubject')
conf$blocks  # "008" "010" "011" "012"

conf$electrodes   # 5 electrodes

# Electrode 14 information
conf$electrode_info(electrode = 14)

conf$data_imported # All 5 electrodes are imported

conf$data_locked   # Whether block, sample rates should be locked


## End(Not run)

Definition for 'RAVE' project class

Description

Definition for 'RAVE' project class

Definition for 'RAVE' project class

Value

character vector

true or false whether subject is in the project

A data table of pipeline time-stamps and directories

Active bindings

path

project folder, absolute path

name

project name, character

pipeline_path

path to pipeline scripts under project's folder

Methods

Public methods


Method print()

override print method

Usage
RAVEProject$print(...)
Arguments
...

ignored


Method new()

constructor

Usage
RAVEProject$new(project_name, strict = TRUE)
Arguments
project_name

character

strict

whether to check project path


Method subjects()

get all imported subjects within project

Usage
RAVEProject$subjects()

Method has_subject()

whether a specific subject exists in this project

Usage
RAVEProject$has_subject(subject_code)
Arguments
subject_code

character, subject name


Method group_path()

get group data path for 'rave' module

Usage
RAVEProject$group_path(module_id, must_work = FALSE)
Arguments
module_id

character, 'rave' module ID

must_work

whether the directory must exist; if not exists, should a new one be created?


Method subject_pipelines()

list saved pipelines

Usage
RAVEProject$subject_pipelines(
  pipeline_name,
  cache = FALSE,
  check = TRUE,
  all = FALSE
)
Arguments
pipeline_name

name of the pipeline

cache

whether to use cached registry

check

whether to check if the pipelines exist as directories

all

whether to list all pipelines; default is false; pipelines with the same label but older time-stamps will be hidden


Method clone()

The objects of this class are cloneable with this method.

Usage
RAVEProject$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.


Defines 'RAVE' subject class

Description

R6 class definition

Value

data frame

integer vector of valid electrodes

The same as value

A named list of key-value pairs, or if one key is specified and simplify=TRUE, then only the value will be returned.

A data frame with four columns: 'namespace' for the group name of the entry (entries within the same namespace usually share same module), 'timestamp' for when the entry was registered. 'entry_name' is the name of the entry. If include_history is true, then multiple entries with the same 'entry_name' might appear since the obsolete entries are included. 'entry_value' is the value of the corresponding entry.

If as_table is FALSE, then returns as RAVEEpoch instance; otherwise returns epoch table; will raise errors when file is missing or the epoch is invalid.

If simplify is true, returns a vector of reference electrode names, otherwise returns the whole table; will raise errors when file is missing or the reference is invalid.

If simplify is true, returns a vector of electrodes that are valid (or won't be excluded) under given reference; otherwise returns a table. If subset is true, then the table will be subset and only rows with electrodes to be loaded will be kept.

If simplify is true, returns a vector of frequencies; otherwise returns a table.

A table of pipeline registry

A PipelineTools instance

Active bindings

project

project instance of current subject; see RAVEProject

project_name

character string of project name

subject_code

character string of subject code

subject_id

subject ID: "project/subject"

path

subject root path

rave_path

'rave' directory under subject root path

meta_path

meta data directory for current subject

imaging_path

root path to imaging processing folder

freesurfer_path

'FreeSurfer' directory for current subject. If no path exists, values will be NA

preprocess_path

preprocess directory under subject 'rave' path

data_path

data directory under subject 'rave' path

cache_path

path to 'FST' copies under subject 'data' path

pipeline_path

path to pipeline scripts under subject's folder

note_path

path that stores 'RAVE' related subject notes

epoch_names

possible epoch names

reference_names

possible reference names

reference_path

reference path under 'rave' folder

preprocess_settings

preprocess instance; see RAVEPreprocessSettings

blocks

subject experiment blocks in current project

electrodes

all electrodes, no matter excluded or not

raw_sample_rates

voltage sample rate

power_sample_rate

power spectrum sample rate

has_wavelet

whether electrodes have wavelet transforms

notch_filtered

whether electrodes are Notch-filtered

electrode_types

electrode signal types

electrode_composed

composed electrode channels, not actual physically contacts, but is generated from those physically ones

Methods

Public methods


Method print()

override print method

Usage
RAVESubject$print(...)
Arguments
...

ignored


Method new()

constructor

Usage
RAVESubject$new(project_name, subject_code = NULL, strict = TRUE)
Arguments
project_name

character project name

subject_code

character subject code

strict

whether to check if subject folders exist


Method meta_data()

get subject meta data located in "meta/" folder

Usage
RAVESubject$meta_data(
  meta_type = c("electrodes", "frequencies", "time_points", "epoch", "references"),
  meta_name = "default"
)
Arguments
meta_type

choices are 'electrodes', 'frequencies', 'time_points', 'epoch', 'references'

meta_name

if meta_type='epoch', read in 'epoch_<meta_name>.csv'; if meta_type='references', read in 'reference_<meta_name>.csv'.


Method valid_electrodes()

get valid electrode numbers

Usage
RAVESubject$valid_electrodes(reference_name, refresh = FALSE)
Arguments
reference_name

character, reference name, see meta_name in self$meta_data or load_meta2 when meta_type is 'reference'

refresh

whether to reload reference table before obtaining data, default is false


Method initialize_paths()

create subject's directories on hard disk

Usage
RAVESubject$initialize_paths(include_freesurfer = TRUE)
Arguments
include_freesurfer

whether to create 'FreeSurfer' path


Method set_default()

set default key-value pair for the subject, used by 'RAVE' modules

Usage
RAVESubject$set_default(key, value, namespace = "default")
Arguments
key

character

value

value of the key

namespace

file name of the note (without post-fix)


Method get_default()

get default key-value pairs for the subject, used by 'RAVE' modules

Usage
RAVESubject$get_default(
  ...,
  default_if_missing = NULL,
  simplify = TRUE,
  namespace = "default"
)
Arguments
...

single key, or a vector of character keys

default_if_missing

default value is any key is missing

simplify

whether to simplify the results if there is only one key to fetch; default is TRUE

namespace

file name of the note (without post-fix)


Method get_note_summary()

get summary table of all the key-value pairs used by 'RAVE' modules for the subject

Usage
RAVESubject$get_note_summary(namespaces, include_history = FALSE)
Arguments
namespaces

namespaces for the entries; see method get_default or set_default. Default is all possible namespaces

include_history

whether to include history entries; default is false


Method get_epoch()

check and get subject's epoch information

Usage
RAVESubject$get_epoch(epoch_name, as_table = FALSE, trial_starts = 0)
Arguments
epoch_name

epoch name, depending on the subject's meta files

as_table

whether to convert to data.frame; default is false

trial_starts

the start of the trial relative to epoch time; default is 0


Method get_reference()

check and get subject's reference information

Usage
RAVESubject$get_reference(reference_name, simplify = FALSE)
Arguments
reference_name

reference name, depending on the subject's meta file settings

simplify

whether to only return the reference column


Method get_electrode_table()

check and get subject's electrode table with electrodes that are load-able

Usage
RAVESubject$get_electrode_table(
  electrodes,
  reference_name,
  subset = FALSE,
  simplify = FALSE
)
Arguments
electrodes

characters indicating integers such as "1-14,20-30", or integer vector of electrode numbers

reference_name

see method get_reference

subset

whether to subset the resulting data table

simplify

whether to only return electrodes


Method get_frequency()

check and get subject's frequency table, time-frequency decomposition is needed.

Usage
RAVESubject$get_frequency(simplify = TRUE)
Arguments
simplify

whether to simplify as vector


Method list_pipelines()

list saved pipelines

Usage
RAVESubject$list_pipelines(
  pipeline_name,
  cache = FALSE,
  check = TRUE,
  all = FALSE
)
Arguments
pipeline_name

pipeline ID

cache

whether to use cache registry to speed up

check

whether to check if the pipelines exist

all

whether to list all pipelines; default is false; pipelines with the same label but older time-stamps will be hidden


Method load_pipeline()

load saved pipeline

Usage
RAVESubject$load_pipeline(directory)
Arguments
directory

pipeline directory name


Method clone()

The objects of this class are cloneable with this method.

Usage
RAVESubject$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

See Also

load_meta2


Class definition of 'RAVE' constrained variable

Description

See new_constrained_variable for constructor function.

Value

Formatted characters

Self instance

Self

Current value

See RAVEVariableConstraints

TRUE if valid, otherwise returns the error message

A list of constraint data that can be passed into $restore method

RAVEVariable instance

Public fields

name

Description of the variable

Active bindings

constraints

instance of RAVEVariableConstraints, used to validate the input

isRAVEVariable

always true

type

constraint type

value

value of the variable

initialized

whether value is missing (value might not be valid)

generator

class definition

Methods

Public methods


Method new()

Constructor function

Usage
RAVEVariable$new(name = "Unnamed", initial_value)
Arguments
name

description of the variable

initial_value

initial value; default is an empty list of class "key_missing"


Method format()

Format method

Usage
RAVEVariable$format(prefix = NULL, ...)
Arguments
prefix

prefix of the string

...

ignored


Method use_constraints()

Set variable validation

Usage
RAVEVariable$use_constraints(constraints, .i, ...)
Arguments
constraints

either a character(1) or a RAVEVariableConstraints instance. When constraints is a string, the value will be the type of the constraint ( see new_constraints)

.i, ...

used when constraints is a string, either .i is an expression, or list(.i,...) forms a list of control parameters; see assertions in new_constraints.


Method set_value()

Set value

Usage
RAVEVariable$set_value(
  x,
  env = parent.frame(),
  validate = TRUE,
  on_error = NULL
)
Arguments
x

value of the variable

env

environment in which the validations will be evaluated

validate

whether to validate if x is legit; if set to TRUE and x is invalid, then the values will not be set.

on_error

a function takes two arguments: the error instance and old value; the returned value will be used to re-validate. Default is NULL, which is identical to returning the old value and stop on error.


Method get_value()

Get value

Usage
RAVEVariable$get_value(...)
Arguments
...

ignored


Method validate()

Check if the value is valid

Usage
RAVEVariable$validate(
  env = parent.frame(),
  on_error = c("error", "warning", "message", "muffle")
)
Arguments
env, on_error

passed to RAVEVariableConstraints$assert.


Method check()

Check if the value is valid with no error raised

Usage
RAVEVariable$check(env = parent.frame())
Arguments
env

environment to evaluate validation expressions


Method store()

Convert constraint to atomic list, used for serializing

Usage
RAVEVariable$store(...)
Arguments
...

ignored


Method restore()

Restores from atomic list generated by $store()

Usage
RAVEVariable$restore(x, env = parent.frame(), ...)
Arguments
x

atomic list

env

environment where to query the class definitions

...

ignored


Method clone()

The objects of this class are cloneable with this method.

Usage
RAVEVariable$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.


Class definition of 'RAVE' constrained variable collection

Description

See new_variable_collection for construction

Value

Formatted characters

Self

The removed variable

TRUE if found, otherwise FALSE

Self

The variable value if variable if found and get_definition is false; or the variable definition if variable is found and is RAVEVariable or RAVEVariableCollection; or ifnotfound if the variable does not exist

The variable values in list

Nothing

TRUE if valid, or raises errors by default

TRUE if valid, otherwise returns the error message

A list of constraint data that can be passed into $restore method

RAVEVariableCollection instance

Public fields

explicit

whether getting and setting values should be explicit. If true, then all variables must be defined (see $add_variable) before used.

Active bindings

.wrapper

wrapper instance of current variable collection

generator

class definition

isRAVEVariableCollection

always true

variables

map containing the variable definitions

varnames

variable names

name

descriptive name of the collection

Methods

Public methods


Method new()

Constructor

Usage
RAVEVariableCollection$new(name = "", explicit = TRUE)
Arguments
name

descriptive name of the collection

explicit

see field explicit


Method format()

Format method

Usage
RAVEVariableCollection$format(...)
Arguments
...

ignored


Method add_variable()

Registers a variable, must run if the collection is explicit

Usage
RAVEVariableCollection$add_variable(id, var)
Arguments
id

variable 'ID'

var

a RAVEVariable or RAVEVariableCollection instance if the variable is bounded, or simply normal R object ( then the variable will have no constraint)


Method remove_variable()

Remove a variable

Usage
RAVEVariableCollection$remove_variable(id)
Arguments
id

variable 'ID'


Method has_variable()

Check whether a variable exists

Usage
RAVEVariableCollection$has_variable(id)
Arguments
id

variable 'ID'


Method set_value()

Set value of a variable

Usage
RAVEVariableCollection$set_value(id, value, env = parent.frame(), ...)
Arguments
id

variable 'ID'

value

the value to be set

env, ...

passed to RAVEVariable$set_value


Method get_value()

Get value of a variable

Usage
RAVEVariableCollection$get_value(
  id,
  env = parent.frame(),
  get_definition = FALSE,
  ifnotfound = NULL
)
Arguments
id

variable 'ID'

env

environment of evaluation

get_definition

whether to return the variable definition instance (RAVEVariable or RAVEVariableCollection) instead of the value; default is false

ifnotfound

default value if not found; default is NULL


Method as_list()

Convert to list

Usage
RAVEVariableCollection$as_list(env = parent.frame())
Arguments
env

environment of evaluation


Method use_constraints()

Set collection validation

Usage
RAVEVariableCollection$use_constraints(x)
Arguments
x

either a NULL or an expression with global variables x, self, private, and defs Mainly used to validate the values of multiple variables (some variables are dependent or bounded by other variables)


Method validate()

Run validation

Usage
RAVEVariableCollection$validate(
  env = parent.frame(),
  on_error = c("error", "warning", "message", "muffle")
)
Arguments
env

environment to evaluate validation expressions

on_error

character, error handler


Method check()

Check if the value is valid with no error raised

Usage
RAVEVariableCollection$check(env = parent.frame())
Arguments
env

environment to evaluate validation expressions


Method store()

Convert constraint to atomic list, used for serializing

Usage
RAVEVariableCollection$store(...)
Arguments
...

ignored


Method restore()

Restores from atomic list generated by $store()

Usage
RAVEVariableCollection$restore(x, env = parent.frame(), clear = FALSE, ...)
Arguments
x

atomic list

env

environment where to query the class definitions

clear

whether to clear the current variables; default is false

...

ignored


Method clone()

The objects of this class are cloneable with this method.

Usage
RAVEVariableCollection$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

See Also

RAVEVariable


Class definition for 'RAVE' variable constraints

Description

See new_constraints for constructor function.

Value

Initialized instance

Formatted characters

Either TRUE if passed or a collection of assertion failures (or errors)

TRUE if valid, otherwise returns the error message

A list of constraint data that can be passed into $restore method

RAVEVariableConstraints instance

Public fields

type

character(1), type indicator

Active bindings

n_validators

Number of validation functions

isRAVEVariableConstraints

always true

generator

class definition

Methods

Public methods


Method new()

Constructor method

Usage
RAVEVariableConstraints$new(type = "UnboundedConstraint", assertions = NULL)
Arguments
type

type of the variable; default is 'UnboundedConstraint'

assertions

named list of the constraint parameters. The names of assertions will be used to indicate the constraint type, and the values are the constraint parameters.


Method format()

Format method

Usage
RAVEVariableConstraints$format(...)
Arguments
...

ignored


Method assert()

Validate the constraints

Usage
RAVEVariableConstraints$assert(
  x,
  .var.name = checkmate::vname(x),
  on_error = c("error", "warning", "message", "muffle"),
  env = parent.frame(),
  data = NULL
)
Arguments
x

value to validate

.var.name

descriptive name of x

on_error

error handler, default is 'error': stop on first validation error

env

environment of validation (used when assertions are expressions)

data

named list of additional data to be used for evaluation if constraint is an expression


Method check()

Check if the value is valid with no error raised

Usage
RAVEVariableConstraints$check(x, env = parent.frame(), data = NULL)
Arguments
x

valid to be validated

env

environment to evaluate validation expressions

data

named list of additional data to be used for evaluation if constraint is an expression


Method store()

Convert constraint to atomic list, used for serializing

Usage
RAVEVariableConstraints$store(...)
Arguments
...

ignored


Method restore()

Restores from atomic list generated by $store()

Usage
RAVEVariableConstraints$restore(x, ...)
Arguments
x

atomic list

...

ignored


Method clone()

The objects of this class are cloneable with this method.

Usage
RAVEVariableConstraints$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.


Read comma separated value file and ignore headers

Description

Resolved some irregular 'iEEG' format where the header could be missing.

Usage

read_csv_ieeg(file, nrows = Inf, drop = NULL)

Arguments

file

comma separated value file to read from. The file must contains all numerical values

nrows

number of rows to read

drop

passed to fread

Details

The function checks the first two rows of comma separated value file If the first row has different storage.mode than the second row, then the first row is considered header, otherwise header is treated missing. Note file must have at least two rows.


Read 'EDF(+)' or 'BDF(+)' file headers

Description

Wrapper of readEdfHeader, but added some information

Usage

read_edf_header(path)

Arguments

path

file path, passed to readEdfHeader

Details

The added names are: isAnnot2, sampleRate2, and unit2. To avoid conflict with other names, there is a "2" appended to each names. isAnnot2 indicates whether each channel is annotation channel or recorded signals. sampleRate2 is a vector of sample rates for each channels. unit2 is physical unit of recorded signals. For 'iEEG' data, this is electric potential unit, and choices are 'V' for volt, 'mV' for millivolt, and 'uV' for micro-volt. For more details, see https://www.edfplus.info/specs/edftexts.html

Value

A list is header information of an 'EDF/BDF' file.

See Also

readEdfHeader


Read 'EDF(+)' or 'BDF(+)' file signals

Description

Read 'EDF(+)' or 'BDF(+)' file signals

Usage

read_edf_signal(
  path,
  signal_numbers = NULL,
  convert_volt = c("NA", "V", "mV", "uV")
)

Arguments

path

file path, passed to readEdfHeader

signal_numbers

channel/electrode numbers

convert_volt

convert voltage (electric potential) to a new unit, NA means no conversion, other choices are 'V', 'mV', and 'uV'.

Value

A list containing header information, signal lists, and channel/electrode names. If signal_numbers is specified, the corresponding names should appear as selected_signal_names. get_signal() can get physical signals after unit conversion.


Read 'Matlab' files

Description

A compatible reader that can read both 'Matlab' files prior and after version 6.0

Usage

read_mat(file, ram = TRUE, engine = c("r", "py"))

read_mat2(file, ram = TRUE, engine = c("r", "py"))

Arguments

file

path to a 'Matlab' file

ram

whether to load data into memory. Only available when the file is in 'HDF5' format. Default is false and will load arrays, if set to true, then lazy-load data. This is useful when array is very large.

engine

method to read the file, choices are 'r' and 'py' ('Python'); if 'py' is chosen, make sure configure_conda is configured.

Details

readMat can only read 'Matlab' files prior to version 6. After version 6, 'Matlab' uses 'HDF5' format to store its data, and read_mat can handle both cases.

The performance of read_mat can be limited when the file is too big or has many datasets as it reads all the data contained in 'Matlab' file into memory.

Value

A list of All the data stored in the file

See Also

readMat, load_h5

Examples

# Matlab .mat <= v7.3
x <- matrix(1:16, 4)
f <- tempfile()
R.matlab::writeMat(con = f, x = x)

read_mat(f)

# Matlab .mat >= v7.3, using hdf5
# Make sure you have installed hdf5r
if( dipsaus::package_installed('hdf5r') ){

f <- tempfile()
save_h5(x, file = f, name = 'x')

read_mat(f)

# For v7.3, you don't have to load all data into RAM
dat <- read_mat(f, ram = FALSE)
dat

dat$x[]

}

Read 'BlackRock' event and signal files

Description

Current implementation supports minimum 2.3 file specification version. Please contact the package maintainer to add specification configurations if you want us to support older versions.

Usage

read_nsx_nev(
  paths,
  nev_path = NULL,
  header_only = FALSE,
  nev_data = TRUE,
  verbose = TRUE,
  ram = FALSE,
  force_update = FALSE,
  temp_path = file.path(tempdir(), "blackrock-temp")
)

Arguments

paths

'NSx' signal files, usually with file extensions such as '.ns1', '.ns2', '.ns3', '.ns4', '.ns5'.

nev_path

'NEV' event files, with file extension '.nev'

header_only

whether to load header information only and avoid reading signal arrays

nev_data

whether to load '.nev' comments and 'waveforms'

verbose

whether to print out progress when loading signal array

ram

whether to load signals into the memory rather than storing with filearray; default is false

force_update

force updating the channel data even if the headers haven't changed

temp_path

temporary directory to store the channel data


Load from 'BrainVision' file

Description

Read in 'eeg' or 'ieeg' data from 'BrainVision' files with .eeg or .dat extensions.

Usage

read_eeg_header(file)

read_eeg_marker(file)

read_eeg_data(header, path = NULL)

Arguments

file

path to 'vhdr' header file

header

header object returned by read_eeg_header

path

optional, path to data file if original data file is missing or renamed; must be absolute path.

Details

A 'BrainVision' dataset is usually stored separately in header file (.vhdr), marker file (.vmrk, optional) and data file (.eeg or .dat). These files must store under a same folder to be read into R.

Header data contains channel information. Data "channel" contains channel name, reference, resolution and physical unit. "resolution" times digital data values is the physical value of the recorded data. read_eeg_data makes this conversion internally . "unit" is the physical unit of recordings. By default 'uV' means micro-volts.

Marker file that ends with .vmrk is optional. If the file is indicated by header file and exists, then a marker table will be included when reading headers. A marker table contains six columns: marker number, type, description, start position (in data point), size (duration in data points), and target channel (0 means applied for all channels).

Signal file name is usually contained within header file. Therefore it is desired that the signal file name never changed once created. However, in some cases when the signal files are renamed and cannot be indexed by header files, please specify path to force load signals from a different file.

Value

read_eeg_header returns a list containing information below:

raw

raw header contents

common

a list of descriptors of header

channels

table of channels, including number, reference, resolution and unit

sample_rate

sampling frequency

root_path

directory to where the data is stored

channel_counts

total channel counts

markers

NULL if marker file is missing, or list of marker description and table containing 6 columns.

read_eeg_data returns header, signal data and data description:

data

a matrix of signal values. Each row is a channel and each column is a time point.

Examples

header_file <- 'sub-01_ses-01_task-visual_run-01_ieeg.vhdr'

if( file.exists(header_file) ){
  # load a subject header
  header <- read_eeg_header(header_file)

  # load entire signal
  data <- read_eeg_data(header)

  data$description
}

Read a 'fst' file

Description

Read a 'fst' file

Usage

save_fst(x, path, ...)

load_fst(path, ..., as.data.table = TRUE)

Arguments

x

data frame to write to path

path

path to 'fst' file: must not be connection.

...

passed to read_fst or write_fst

as.data.table

passed to read_fst in fst package


Read comma separated value files with given column classes

Description

Read comma separated value files with given column classes

Usage

safe_read_csv(
  file,
  header = TRUE,
  sep = ",",
  colClasses = NA,
  skip = 0,
  quote = "\"",
  ...,
  stringsAsFactors = FALSE
)

Arguments

file, header, sep, colClasses, skip, quote, stringsAsFactors, ...

passed to read.csv

Details

Reading a comma separated value file using builtin function read.csv might result in some unexpected behavior. safe_read_csv does some preprocessing on the format so that it take cares of the following cases.

1. If skip exceeds the maximum rows of the data, return a blank data frame instead of raising error.

2. If row names are included in the file, colClasses automatically skip that column and starts from the second column

3. If length of colClasses does not equal to the number of columns, instead of cycling the class types, we set those columns to be NA type and let read.csv decide the default types.

4. stringsAsFactors is by default FALSE to be consistent with R 4.0, if the function is called in R 3.x.

Value

A data frame

Examples

f <- tempfile()
x <- data.frame(a = letters[1:10], b = 1:10, c = 2:11)

# ------------------ Auto-detect row names ------------------
# Write with rownames
utils::write.csv(x, f, row.names = LETTERS[2:11])

# read csv with base library utils
table1 <- utils::read.csv(f, colClasses = c('character', 'character'))

# 4 columns including row names
str(table1)

# read csv via safe_read_csv
table2 <- safe_read_csv(f, colClasses = c('character', 'character'))

# row names are automatically detected, hence 3 columns
# Only first columns are characters, the third column is auto
# detected as numeric
str(table2)

# read table without row names
utils::write.csv(x, f, row.names = FALSE)
table2 <- safe_read_csv(f, colClasses = c('character', 'character'))

# still 3 columns, and row names are 1:nrow
str(table2)

# --------------- Blank data frame when nrow too large ---------------
# instead of raising errors, return blank data frame
safe_read_csv(f, skip = 1000)

Save data to comma separated value files with backups

Description

Save comma separated value files, if file exists, backup original file.

Usage

safe_write_csv(x, file, ..., quiet = FALSE)

Arguments

x, file, ...

pass to write.csv

quiet

whether to suppress overwrite message

Value

Normalized path of file

Examples

f <- tempfile()
x <- data.frame(a = 1:10)

# File not exists, same as write file, returns normalized `f`
safe_write_csv(x, f)

# Check whether file exists
file.exists(f)

# write again, and the old file will be copied
safe_write_csv(x, f)

Save objects to 'HDF5' file without trivial checks

Description

Save objects to 'HDF5' file without trivial checks

Usage

save_h5(
  x,
  file,
  name,
  chunk = "auto",
  level = 4,
  replace = TRUE,
  new_file = FALSE,
  ctype = NULL,
  quiet = FALSE,
  ...
)

Arguments

x

an array, a matrix, or a vector

file

path to 'HDF5' file

name

path/name of the data; for example, "group/data_name"

chunk

chunk size

level

compress level from 0 - no compression to 10 - max compression

replace

should data be replaced if exists

new_file

should removing the file if old one exists

ctype

data type such as "character", "integer", or "numeric". If set to NULL then automatically detect types. Note for complex data please store separately the real and imaginary parts.

quiet

whether to suppress messages, default is false

...

passed to other LazyH5$save

Value

Absolute path of the file saved

See Also

load_h5

Examples

file <- tempfile()
x <- array(1:120, dim = 2:5)

# save x to file with name /group/dataset/1
save_h5(x, file, '/group/dataset/1', chunk = dim(x))

# read data
y <- load_h5(file, '/group/dataset/1')
y[]

Save or load R object in 'JSON' format

Description

Save or load R object in 'JSON' format

Usage

save_json(
  x,
  con = stdout(),
  ...,
  digits = ceiling(-log10(.Machine$double.eps)),
  pretty = TRUE,
  serialize = TRUE
)

load_json(con, ..., map = NULL)

Arguments

x

R object to save

con

file or connection

...

other parameters to pass into toJSON or fromJSON

digits

number of digits to save

pretty

whether the output should be pretty

serialize

whether to save a serialized version of x; see 'Examples'.

map

a map to save the results

Value

save_json returns nothing; load_json returns an R object.

Examples

# Serialize
save_json(list(a = 1, b = function(){}))

# use toJSON
save_json(list(a = 1, b = function(){}), serialize = FALSE)


# Demo of using serializer
f1 <- tempfile(fileext = ".json")
save_json(x ~ y + 1, f1)

load_json(f1)

unlink(f1)

Function to save meta data to 'RAVE' subject

Description

Function to save meta data to 'RAVE' subject

Usage

save_meta2(data, meta_type, project_name, subject_code)

Arguments

data

data table

meta_type

see load meta

project_name

project name

subject_code

subject code

Value

Either none if no meta matched or the absolute path of file saved.


Write named list to file

Description

Write named list to file

Usage

save_yaml(x, file, ..., sorted = FALSE)

Arguments

x

a named list, fastmap2, or anything that can be transformed into named list via as.list

file, ...

passed to write_yaml

sorted

whether to sort the results by name; default is false

Value

Normalized file path

See Also

fastmap2, load_yaml, read_yaml, write_yaml

Examples

x <- list(a = 1, b = 2)
f <- tempfile()

save_yaml(x, f)

load_yaml(f)

map <- dipsaus::fastmap2(missing_default = NA)
map$c <- 'lol'
load_yaml(f, map = map)

map$a
map$d

R6 Class for large Tensor (Array) in Hybrid Mode

Description

can store on hard drive, and read slices of GB-level data in seconds

Value

self

the sliced data

a data frame with the dimension names as index columns and value_name as value column

original array

the collapsed data

Public fields

dim

dimension of the array

dimnames

dimension names of the array

use_index

whether to use one dimension as index when storing data as multiple files

hybrid

whether to allow data to be written to disk

last_used

timestamp of the object was read

temporary

whether to remove the files once garbage collected

Active bindings

varnames

dimension names (read-only)

read_only

whether to protect the swap files from being changed

swap_file

file or files to save data to

Methods

Public methods


Method finalize()

release resource and remove files for temporary instances

Usage
Tensor$finalize()

Method print()

print out the data dimensions and snapshot

Usage
Tensor$print(...)
Arguments
...

ignored


Method .use_multi_files()

Internally used, whether to use multiple files to cache data instead of one

Usage
Tensor$.use_multi_files(mult)
Arguments
mult

logical


Method new()

constructor

Usage
Tensor$new(
  data,
  dim,
  dimnames,
  varnames,
  hybrid = FALSE,
  use_index = FALSE,
  swap_file = temp_tensor_file(),
  temporary = TRUE,
  multi_files = FALSE
)
Arguments
data

numeric array

dim

dimension of the array

dimnames

dimension names of the array

varnames

characters, names of dimnames

hybrid

whether to enable hybrid mode

use_index

whether to use the last dimension for indexing

swap_file

where to store the data in hybrid mode files to save data by index; default stores in raveio_getopt('tensor_temp_path')

temporary

whether to remove temporary files when existing

multi_files

if use_index is true, whether to use multiple


Method subset()

subset tensor

Usage
Tensor$subset(..., drop = FALSE, data_only = FALSE, .env = parent.frame())
Arguments
...

dimension slices

drop

whether to apply drop on subset data

data_only

whether just return the data value, or wrap them as a Tensor instance

.env

environment where ... is evaluated


Method flatten()

converts tensor (array) to a table (data frame)

Usage
Tensor$flatten(include_index = FALSE, value_name = "value")
Arguments
include_index

logical, whether to include dimension names

value_name

character, column name of the value


Method to_swap()

Serialize tensor to a file and store it via write_fst

Usage
Tensor$to_swap(use_index = FALSE, delay = 0)
Arguments
use_index

whether to use one of the dimension as index for faster loading

delay

if greater than 0, then check when last used, if not long ago, then do not swap to hard drive. If the difference of time is greater than delay in seconds, then swap immediately.


Method to_swap_now()

Serialize tensor to a file and store it via write_fst immediately

Usage
Tensor$to_swap_now(use_index = FALSE)
Arguments
use_index

whether to use one of the dimension as index for faster loading


Method get_data()

restore data from hard drive to memory

Usage
Tensor$get_data(drop = FALSE, gc_delay = 3)
Arguments
drop

whether to apply drop to the data

gc_delay

seconds to delay the garbage collection


Method set_data()

set/replace data with given array

Usage
Tensor$set_data(v)
Arguments
v

the value to replace the old one, must have the same dimension

notice

the a tensor is an environment. If you change at one place, the data from all other places will change. So use it carefully.


Method collapse()

apply mean, sum, or median to collapse data

Usage
Tensor$collapse(keep, method = "mean")
Arguments
keep

which dimensions to keep

method

"mean", "sum", or "median"


Method operate()

apply the tensor by anything along given dimension

Usage
Tensor$operate(
  by,
  fun = .Primitive("/"),
  match_dim,
  mem_optimize = FALSE,
  same_dimension = FALSE
)
Arguments
by

R object

fun

function to apply

match_dim

which dimensions to match with the data

mem_optimize

optimize memory

same_dimension

whether the return value has the same dimension as the original instance

Examples

if(!is_on_cran()){

# Create a tensor
ts <- Tensor$new(
  data = 1:18000000, c(3000,300,20),
  dimnames = list(A = 1:3000, B = 1:300, C = 1:20),
  varnames = c('A', 'B', 'C'))

# Size of tensor when in memory is usually large
# `lobstr::obj_size(ts)` -> 8.02 MB

# Enable hybrid mode
ts$to_swap_now()

# Hybrid mode, usually less than 1 MB
# `lobstr::obj_size(ts)` -> 814 kB

# Subset data
start1 <- Sys.time()
subset(ts, C ~ C < 10 & C > 5, A ~ A < 10)
#> Dimension:  9 x 300 x 4
#> - A: 1, 2, 3, 4, 5, 6,...
#> - B: 1, 2, 3, 4, 5, 6,...
#> - C: 6, 7, 8, 9
end1 <- Sys.time(); end1 - start1
#> Time difference of 0.188035 secs

# Join tensors
ts <- lapply(1:20, function(ii){
  Tensor$new(
    data = 1:9000, c(30,300,1),
    dimnames = list(A = 1:30, B = 1:300, C = ii),
    varnames = c('A', 'B', 'C'), use_index = 2)
})
ts <- join_tensors(ts, temporary = TRUE)

}

Simple hard disk speed test

Description

Simple hard disk speed test

Usage

test_hdspeed(
  path = tempdir(),
  file_size = 1e+06,
  quiet = FALSE,
  abort_if_slow = TRUE,
  use_cache = FALSE
)

Arguments

path

an existing directory where to test speed, default is temporary local directory.

file_size

in bytes, default is 1 MB.

quiet

should verbose messages be suppressed?

abort_if_slow

abort test if hard drive is too slow. This usually happens when the hard drive is connected via slow internet: if the write speed is less than 0.1 MB per second.

use_cache

if hard drive speed was tested before, abort testing and return cached results or not; default is false.

Value

A vector of two: writing and reading speed in MB per seconds.


Calculate time difference in seconds

Description

Calculate time difference in seconds

Usage

time_diff2(start, end, units = "secs", label = "")

Arguments

start, end

start and end of timer

units

passed to time_delta

label

rave-units label for display purpose.

Value

A number inherits rave-units class.

See Also

as_rave_unit

Examples

start <- Sys.time()
Sys.sleep(0.1)
end <- Sys.time()
dif <- time_diff2(start, end, label = 'Running ')
print(dif, digits = 4)

is.numeric(dif)

dif + 1

Calculate template 'MNI' coordinates for points on native brain

Description

Calculate template 'MNI' coordinates for points on native brain

Usage

transform_point_to_template(
  subject,
  positions,
  space = c("scannerRAS", "tkrRAS"),
  mapping_method = c("volumetric", "surface"),
  flip_hemisphere = FALSE,
  verbose = TRUE,
  project_surface = "pial",
  volumetric_transform = c("auto", "affine", "nonlinear"),
  ...
)

transform_thinfilm_to_mni152(
  subject,
  flip_hemisphere = FALSE,
  interpolator = 0.3,
  n_segments = c(16, 16),
  group_labels = NULL,
  project_surface = "pial",
  volumetric_transform = c("auto", "affine", "nonlinear")
)

Arguments

subject

'RAVE' subject

positions

optional matrix of 3 columns, either in scanner or surface space (specified by space); default is missing and will use the electrode localization results (electrodes.csv)

space

if positions is given, which native coordinate system should be used; default is native 'T1' (or 'scannerRAS'); alternative is 'FreeSurfer' surface coordinate (or 'tkrRAS')

mapping_method

whether the mapping is 'volumetric' or 'surface'; default is the former.

flip_hemisphere

whether to flip the hemisphere; default is FALSE

verbose

whether to verbose the mapping progress; default is true

project_surface

for surface mapping only, which surface to project electrodes onto; default is 'pial' surface, other common choices are 'white' for white-matter, or 'smoothwm' for smoothed white matter

volumetric_transform

for volume mapping only, which type of transform to use; default is 'auto' detecting and use non-linear deformation if exists, and fall back to 'affine' transform; other choices are 'affine' or 'nonlinear'

...

ignored

interpolator

whether the transform lean towards volume mapping (interpolator=0) or surface mapping (interpolator=1)

n_segments

positive integers with length of two: resolution of the mapping; default segments the thin-film array into 16 by 16 segments

group_labels

NULL (default) or a character vector indicating the group labels of thin-film electrodes; default assumes that all contacts are from thin-film electrodes.

Value

A table of electrode 'MNI' coordinates.

Examples

if(interactive()) {

transform_point_to_template('demo/DemoSubject', mapping_method = "volumetric")

}

Get 'Neurosynth' website address using 'MNI152' coordinates

Description

Get 'Neurosynth' website address using 'MNI152' coordinates

Usage

url_neurosynth(x, y, z)

Arguments

x, y, z

numerical values: the right-anterior-superior 'RAS' coordinates in 'MNI152' space

Value

'Neurosynth' website address


Validate subject data integrity

Description

Check against existence, validity, and consistency

Arguments

subject

subject ID (character), or RAVESubject instance

method

validation method, choices are 'normal' (default) or 'basic' for fast checks; if set to 'normal', four additional validation parts will be tested (see parts with * in Section 'Value').

verbose

whether to print out the validation messages

version

data version, choices are 1 for 'RAVE' 1.0 data format, and 2 ('RAVE' 2.0 data format); default is 2

Value

A list of nested validation results. The validation process consists of the following parts in order:

Data paths (paths)
path

the subject's root folder

path

the subject's 'RAVE' folder (the 'rave' folder under the root directory)

raw_path

the subject's raw data folder

data_path

a directory storing all the voltage, power, phase data (before reference)

meta_path

meta directory containing all the electrode coordinates, reference table, epoch information, etc.

reference_path

a directory storing calculated reference signals

preprocess_path

a directory storing all the preprocessing information

cache_path (low priority)

data caching path

freesurfer_path (low priority)

subject's 'FreeSurfer' directory

note_path (low priority)

subject's notes

pipeline_path (low priority)

a folder containing all saved pipelines for this subject

Preprocessing information (preprocess)
electrodes_set

whether the subject has a non-empty electrode set

blocks_set

whether the session block length is non-zero

sample_rate_set

whether the raw sampling frequency is set to a valid, proper positive number

data_imported

whether all the assigning electrodes have been imported

notch_filtered

whether all the 'LFP' and 'EKG' signals have been 'Notch' filtered

has_wavelet

whether all the 'LFP' signals are wavelet-transformed

has_reference

at least one reference has been generated in the meta folder

has_epoch

at least one epoch file has been generated in the meta folder

has_electrode_file

meta folder has electrodes.csv file

Meta information (meta)
meta_data_valid

this item only exists when the previous preprocess validation is failed or incomplete

meta_electrode_table

the electrodes.csv file in the meta folder has correct format and consistent electrodes numbers to the preprocess information

meta_reference_xxx

(xxx will be replaced with actual reference names) checks whether the reference table contains all electrodes and whether each reference data exists

meta_epoch_xxx

(xxx will be replaced with actual epoch names) checks whether the epoch table has the correct formats and whether there are missing blocks indicated in the epoch files

Voltage data (voltage_data*)
voltage_preprocessing

whether the raw preprocessing voltage data are valid. This includes data lengths are the same within the same blocks for each signal type

voltage_data

whether the voltage data (after 'Notch' filters) exist and readable. Besides, the lengths of the data must be consistent with the raw signals

Spectral power and phase (power_phase_data*)
power_data

whether the power data exists for all 'LFP' signals. Besides, to pass the validation process, the frequency and time-point lengths must be consistent with the preprocess record

power_data

same as power_data but for the phase data

Epoch table (epoch_tables*)

One or more sub-items depending on the number of epoch tables. To pass the validation, the event time for each session block must not exceed the actual signal duration. For example, if one session lasts for 200 seconds, it will invalidate the result if a trial onset time is later than 200 seconds.

Reference table (reference_tables*)

One or more sub-items depending on the number of reference tables. To pass the validation, the reference data must be valid. The inconsistencies, for example, missing file, wrong frequency size, invalid time-point lengths will result in failure


Validate time windows to be used

Description

Make sure the time windows are valid intervals and returns a reshaped window list

Usage

validate_time_window(time_windows)

Arguments

time_windows

vectors or a list of time intervals

Value

A list of time intervals (ordered, length of 2)

Examples

# Simple time window
validate_time_window(c(-1, 2))

# Multiple windows
validate_time_window(c(-1, 2, 3, 5))

# alternatively
validate_time_window(list(c(-1, 2), c(3, 5)))
validate_time_window(list(list(-1, 2), list(3, 5)))


## Not run: 

# Incorrect usage (will raise errors)

  # Invalid interval (length must be two for each intervals)
  validate_time_window(list(c(-1, 2, 3, 5)))

  # Time intervals must be in ascending order
  validate_time_window(c(2, 1))


## End(Not run)

Calculate voltage baseline

Description

Calculate voltage baseline

Usage

voltage_baseline(
  x,
  baseline_windows,
  method = c("percentage", "zscore", "subtract_mean"),
  units = c("Trial", "Electrode"),
  ...
)

## S3 method for class 'rave_prepare_subject_raw_voltage_with_epoch'
voltage_baseline(
  x,
  baseline_windows,
  method = c("percentage", "zscore", "subtract_mean"),
  units = c("Trial", "Electrode"),
  electrodes,
  baseline_mean,
  baseline_sd,
  ...
)

## S3 method for class 'rave_prepare_subject_voltage_with_epoch'
voltage_baseline(
  x,
  baseline_windows,
  method = c("percentage", "zscore", "subtract_mean"),
  units = c("Trial", "Electrode"),
  electrodes,
  baseline_mean,
  baseline_sd,
  ...
)

## S3 method for class 'FileArray'
voltage_baseline(
  x,
  baseline_windows,
  method = c("percentage", "zscore", "subtract_mean"),
  units = c("Trial", "Electrode"),
  filebase = NULL,
  ...
)

## S3 method for class 'array'
voltage_baseline(
  x,
  baseline_windows,
  method = c("percentage", "zscore", "subtract_mean"),
  units = c("Trial", "Electrode"),
  ...
)

Arguments

x

R array, filearray, or 'rave_prepare_power' object created by prepare_subject_raw_voltage_with_epoch.

baseline_windows

list of baseline window (intervals)

method

baseline method; choices are 'percentage' and 'zscore'; see 'Details' in baseline_array

units

the unit of the baseline; see 'Details'

...

passed to other methods

electrodes

the electrodes to be included in baseline calculation; for power repository object produced by prepare_subject_power only; default is all available electrodes in each of signal_types

baseline_mean, baseline_sd

internally used by 'RAVE' repository, provided baseline is not contained in the data. This is useful for calculating the baseline with data from other blocks.

filebase

where to store the output; default is NULL and is automatically determined

Details

The arrays must be three-mode tensor and must have valid named dimnames. The dimension names must be 'Trial', 'Time', 'Electrode', case sensitive.

The baseline_windows determines the baseline windows that are used to calculate time-points of baseline to be included. This can be one or more intervals and must pass the validation function validate_time_window.

The units determines the unit of the baseline. It can be either or both of 'Trial', 'Electrode'. The default value is both, i.e., baseline for each combination of trial and electrode.

Value

The same type as the inputs

Examples

## Not run: 
# The following code need to download additional demo data
# Please see https://rave.wiki/ for more details

library(raveio)
repo <- prepare_subject_raw_voltage_with_epoch(
  subject = "demo/DemoSubject",
  time_windows = c(-1, 3),
  electrodes = c(14, 15))

##### Direct baseline on repository
voltage_baseline(
  x = repo, method = "zscore",
  baseline_windows = list(c(-1, 0), c(2, 3))
)

voltage_mean <- repo$raw_voltage$baselined$collapse(
  keep = c(1,3), method = "mean")
matplot(voltage_mean, type = "l", lty = 1,
        x = repo$raw_voltage$dimnames$Time,
        xlab = "Time (s)", ylab = "Voltage (z-scored)",
        main = "Mean coltage over trial (Baseline: -1~0 & 2~3)")
abline(v = 0, lty = 2, col = 'darkgreen')
text(x = 0, y = -0.5, "Aud-Onset ", col = "darkgreen", cex = 0.6, adj = c(1,1))

##### Alternatively, baseline on each electrode channel
voltage_mean2 <- sapply(repo$raw_voltage$data_list, function(inst) {
  re <- voltage_baseline(
    x = inst, method = "zscore",
    baseline_windows = list(c(-1, 0), c(2, 3)))
  rowMeans(re[])
})

# Same with floating difference
max(abs(voltage_mean - voltage_mean2)) < 1e-8



## End(Not run)

Enable parallel computing provided by 'future' package within the context

Description

Enable parallel computing provided by 'future' package within the context

Usage

with_future_parallel(
  expr,
  env = parent.frame(),
  quoted = FALSE,
  on_failure = "multisession",
  max_workers = NA,
  ...
)

Arguments

expr

the expression to be evaluated

env

environment of the expr

quoted

whether expr has been quoted; default is false

on_failure

alternative 'future' plan to use if forking a process is disallowed; this usually occurs on 'Windows' machines; see details.

max_workers

maximum of workers; default is automatically set by raveio_getopt("max_worker",1L)

...

additional parameters passing into make_forked_clusters

Details

Some 'RAVE' functions such as prepare_subject_power support parallel computing to speed up. However, the parallel computing is optional. You can enable it by wrapping the function calls within with_future_parallel (see examples).

The default plan is to use 'forked' R sessions. This is a convenient, fast, and relative simple way to create multiple R processes that share the same memories. However, on some machines such as 'Windows' the support has not yet been implemented. In such cases, the plan fall backs to a back-up specified by on_failure. By default, on_failure is 'multisession', a heavier implementation than forking the process, and slightly longer ramp-up time. However, the difference should be marginal for most of the functions.

When parallel computing is enabled, the number of parallel workers is specified by the option raveio_getopt("max_worker", 1L).

Value

The evaluation results of expr

Examples

library(raveio)

demo_subject <- as_rave_subject("demo/DemoSubject", strict = FALSE)

if(dir.exists(demo_subject$path)) {
  with_future_parallel({
    prepare_subject_power("demo/DemoSubject")
  })
}

Class definition of 'YAEL' image pipeline

Description

Rigid-registration across multiple types of images, non-linear normalization from native brain to common templates, and map template atlas or 'ROI' back to native brain. See examples at as_yael_process

Value

whether the image has been set (or replaced)

Absolute path if the image

'RAVE' subject instance

Nothing

A list of moving and fixing images, with rigid transformations from different formats.

See method get_template_mapping

A list of input, output images, with forward and inverse transform files (usually two 'Affine' with one displacement field)

transformed image in 'ANTs' format

transformed image in 'ANTs' format

Nothing

A matrix of 3 columns, each row is a transformed points ( invalid rows will be filled with NA)

A matrix of 3 columns, each row is a transformed points ( invalid rows will be filled with NA)

Active bindings

subject_code

'RAVE' subject code

image_types

allowed image types

work_path

Working directory ('RAVE' imaging path)

Methods

Public methods


Method new()

Constructor to instantiate the class

Usage
YAELProcess$new(subject_code, image_types)
Arguments
subject_code

character code representing the subject

image_types

vector of image types, such as 'T1w', 'CT', 'fGATIR'. All images except 'CT' will be considered 'preop' (before electrode implantation). Please use 'postop' to indicate if an image is taken after the implantation (for example, 'postopT1w')


Method set_input_image()

Set the raw input for different image types

Usage
YAELProcess$set_input_image(
  path,
  type = YAEL_IMAGE_TYPES,
  overwrite = FALSE,
  on_error = c("warning", "error", "ignore")
)
Arguments
path

path to the image files in 'NIfTI' format

type

type of the image

overwrite

whether to overwrite existing images if the same type has been imported before; default is false

on_error

when the file exists and overwrite is false, how should this error be reported; choices are 'warning' (default), 'error' (throw error and abort), or 'ignore'.


Method get_input_image()

Get image path

Usage
YAELProcess$get_input_image(type = YAEL_IMAGE_TYPES)
Arguments
type

type of the image


Method get_subject()

Get 'RAVE' subject instance

Usage
YAELProcess$get_subject(project_name = "YAEL", strict = FALSE)
Arguments
project_name

project name; default is 'YAEL'

strict

passed to as_rave_subject


Method register_to_T1w()

Register other images to 'T1' weighted 'MRI'

Usage
YAELProcess$register_to_T1w(image_type = "CT", reverse = FALSE, verbose = TRUE)
Arguments
image_type

type of the image to register, must be set via process$set_input_image first.

reverse

whether to reverse the registration; default is false, meaning the fixed (reference) image is the 'T1'. When setting to true, then the 'T1' 'MRI' will become the moving image

verbose

whether to print out the process; default is true


Method get_native_mapping()

Get the mapping configurations used by register_to_T1w

Usage
YAELProcess$get_native_mapping(image_type = YAEL_IMAGE_TYPES, relative = FALSE)
Arguments
image_type

type of the image registered to 'T1' weighted 'MRI'

relative

whether to use relative path (to the work_path field)


Method map_to_template()

Normalize native brain to 'MNI152' template

Usage
YAELProcess$map_to_template(
  template_name = c("mni_icbm152_nlin_asym_09a", "mni_icbm152_nlin_asym_09b",
    "mni_icbm152_nlin_asym_09c"),
  use_images = c("T1w", "T2w", "T1wContrast", "fGATIR", "preopCT"),
  native_type = "T1w",
  verbose = TRUE,
  ...
)
Arguments
template_name

which template to use, choices are 'mni_icbm152_nlin_asym_09a', 'mni_icbm152_nlin_asym_09b', 'mni_icbm152_nlin_asym_09c'.

use_images

a vector of image types to use for normalization; default types are 'T1w', 'T2w', 'T1wContrast', 'fGATIR', and 'preopCT'. To use all available images for normalization, use wildcard "all"

native_type

which type of image should be used to map to template; default is 'T1w'

verbose

whether to print out the process; default is true

...

additional tuning parameters passed to internal 'Python' code.


Method get_template_mapping()

Get configurations used for normalization

Usage
YAELProcess$get_template_mapping(
  template_name = c("mni_icbm152_nlin_asym_09a", "mni_icbm152_nlin_asym_09b",
    "mni_icbm152_nlin_asym_09c"),
  native_type = "T1w",
  relative = FALSE
)
Arguments
template_name

which template is used

native_type

which native image is mapped to template

relative

whether the paths should be relative or absolute; default is false (absolute paths)


Method transform_image_from_template()

Apply transform from images (usually an atlas or 'ROI') on template to native space

Usage
YAELProcess$transform_image_from_template(
  template_roi_path,
  template_name = c("mni_icbm152_nlin_asym_09a", "mni_icbm152_nlin_asym_09b",
    "mni_icbm152_nlin_asym_09c"),
  native_type = "T1w",
  interpolator = c("auto", "nearestNeighbor", "linear", "gaussian", "bSpline",
    "cosineWindowedSinc", "welchWindowedSinc", "hammingWindowedSinc",
    "lanczosWindowedSinc", "genericLabel"),
  verbose = TRUE
)
Arguments
template_roi_path

path to the template image file which will be transformed into individuals' image

template_name

templates to use

native_type

which type of native image to use for calculating the coordinates (default 'T1w')

interpolator

how to interpolate the 'voxels'; default is "auto": 'linear' for probabilistic map and 'nearestNeighbor' otherwise.

verbose

whether the print out the progress


Method transform_image_to_template()

Apply transform to images (usually an atlas or 'ROI') from native space to template

Usage
YAELProcess$transform_image_to_template(
  native_roi_path,
  template_name = c("mni_icbm152_nlin_asym_09a", "mni_icbm152_nlin_asym_09b",
    "mni_icbm152_nlin_asym_09c"),
  native_type = "T1w",
  interpolator = c("auto", "nearestNeighbor", "linear", "gaussian", "bSpline",
    "cosineWindowedSinc", "welchWindowedSinc", "hammingWindowedSinc",
    "lanczosWindowedSinc", "genericLabel"),
  verbose = TRUE
)
Arguments
native_roi_path

path to the native image file that will be transformed into template

template_name

templates to use

native_type

which type of native image to use for calculating the coordinates (default 'T1w')

interpolator

how to interpolate the 'voxels'; default is "auto": 'linear' for probabilistic map and 'nearestNeighbor' otherwise.

verbose

whether the print out the progress


Method generate_atlas_from_template()

Generate atlas maps from template and morph to native brain

Usage
YAELProcess$generate_atlas_from_template(
  template_name = c("mni_icbm152_nlin_asym_09a", "mni_icbm152_nlin_asym_09b",
    "mni_icbm152_nlin_asym_09c"),
  atlas_folder = NULL,
  surfaces = NA,
  verbose = TRUE
)
Arguments
template_name

which template to use

atlas_folder

path to the atlas folder (that contains the atlas files)

surfaces

whether to generate surfaces (triangle mesh); default is NA (generate if not existed). Other choices are TRUE for always generating and overwriting surface files, or FALSE to disable this function. The generated surfaces will stay in native 'T1' space.

verbose

whether the print out the progress


Method transform_points_to_template()

Transform points from native images to template

Usage
YAELProcess$transform_points_to_template(
  native_ras,
  template_name = c("mni_icbm152_nlin_asym_09a", "mni_icbm152_nlin_asym_09b",
    "mni_icbm152_nlin_asym_09c"),
  native_type = "T1w",
  verbose = TRUE
)
Arguments
native_ras

matrix or data frame with 3 columns indicating points sitting on native images in right-anterior-superior ('RAS') coordinate system.

template_name

template to use for mapping

native_type

native image type where the points sit on

verbose

whether the print out the progress


Method transform_points_from_template()

Transform points from template images to native

Usage
YAELProcess$transform_points_from_template(
  template_ras,
  template_name = c("mni_icbm152_nlin_asym_09a", "mni_icbm152_nlin_asym_09b",
    "mni_icbm152_nlin_asym_09c"),
  native_type = "T1w",
  verbose = TRUE
)
Arguments
template_ras

matrix or data frame with 3 columns indicating points sitting on template images in right-anterior-superior ('RAS') coordinate system.

template_name

template to use for mapping

native_type

native image type where the points sit on

verbose

whether the print out the progress


Method construct_ants_folder_from_template()

Create a reconstruction folder (as an alternative option) that is generated from template brain to facilitate the '3D' viewer. Please make sure method map_to_template is called before using this method (or the program will fail)

Usage
YAELProcess$construct_ants_folder_from_template(
  template_name = c("mni_icbm152_nlin_asym_09a", "mni_icbm152_nlin_asym_09b",
    "mni_icbm152_nlin_asym_09c"),
  add_surfaces = TRUE
)
Arguments
template_name

template to use for mapping

add_surfaces

whether to create surfaces that is morphed from template to local; default is TRUE. Please enable this option only if the cortical surfaces are not critical (for example, you are studying the deep brain structures). Always use 'FreeSurfer' if cortical information is used.


Method get_brain()

Get '3D' brain model

Usage
YAELProcess$get_brain(
  electrodes = TRUE,
  project_name = "YAEL",
  coord_sys = c("scannerRAS", "tkrRAS", "MNI152", "MNI305"),
  ...
)
Arguments
electrodes

whether to add electrodes to the viewers; can be logical, data frame, or a character (path to electrode table). When the value is TRUE, the electrode file under project_name will be loaded; when electrodes is a data.frame, or path to a 'csv' file, then please specify coord_sys on what is the coordinate system used for columns "x", "y", and "z".

project_name

project name under which the electrode table should be queried, if electrodes=TRUE

coord_sys

coordinate system if electrodes is a data frame with columns "x", "y", and "z", available choices are 'scannerRAS' (defined by 'T1' weighted native 'MRI' image), 'tkrRAS' ('FreeSurfer' defined native 'TK-registered'), 'MNI152' (template 'MNI' coordinate system averaged over 152 subjects; this is the common "'MNI' coordinate space" we often refer to), and 'MNI305' (template 'MNI' coordinate system averaged over 305 subjects; this coordinate system used by templates such as 'fsaverage')

...

passed to threeBrain


Method clone()

The objects of this class are cloneable with this method.

Usage
YAELProcess$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.