Package 'ieegio'

Title: File IO for Intracranial Electroencephalography
Description: Integrated toolbox supporting common file formats used for intracranial Electroencephalography (iEEG) and deep-brain stimulation (DBS) study.
Authors: Zhengjia Wang [aut, cre]
Maintainer: Zhengjia Wang <[email protected]>
License: MIT + file LICENSE
Version: 0.0.3
Built: 2025-01-13 18:30:27 UTC
Source: https://github.com/dipterix/ieegio

Help Index


Convert other surface formats to ieegio surface

Description

Convert other surface formats to ieegio surface

Usage

as_ieegio_surface(x, ...)

## Default S3 method:
as_ieegio_surface(
  x,
  vertices = x,
  faces = NULL,
  face_start = NA,
  transform = NULL,
  vertex_colors = NULL,
  annotation_labels = NULL,
  annotation_values = NULL,
  measurements = NULL,
  time_series_slice_duration = NULL,
  time_series_value = NULL,
  name = NULL,
  ...
)

## S3 method for class 'character'
as_ieegio_surface(x, ...)

## S3 method for class 'ieegio_surface'
as_ieegio_surface(x, ...)

## S3 method for class 'mesh3d'
as_ieegio_surface(x, ...)

## S3 method for class 'fs.surface'
as_ieegio_surface(x, ...)

Arguments

x

R object or file path

...

passed to default method

vertices

n by 3 matrix, each row is a vertex node position

faces

(optional) face index, either zero or one-indexed (Matlab and R start counting from 1 while C and Python start indices from 0); one-index face order is recommended

face_start

(optional) either 0 or 1, indicating whether faces is zero or one-indexed; default is NA, which will check whether the minimum value of faces is 0. If so, then faces will be bumped by 1 internally

transform

(optional) a 4 by 4 matrix indicating the vertex position to scanner RAS transform. Default is missing (identity matrix), i.e. the vertex positions are already in the scanner RAS coordinate system.

vertex_colors

(optional) integer or color (hex) vector indicating the vertex colors

annotation_labels

(optional) a data frame containing at the following columns. Though optional, annotation_labels must be provided when annotation_values is provided

"Key"

unique integers to appear in annotation_values, indicating the key of the annotation label

"Label"

a character vector (strings) of human-readable labels of the corresponding key

"Color"

hex string indicating the color of the key/label

annotation_values

(optional) an integer table where each column is a vector of annotation key (for example, 'FreeSurfer' segmentation key) and each row corresponds to a vertex node

measurements

(optional) a numeric table where each column represents a variable (for example, curvature) and each row corresponds to a vertex node. Unlike annotations, which is for discrete node values, measurements is for continuous values

time_series_slice_duration

(optional) a numeric vector indicating the duration of each slice; default is NA

time_series_value

(optional) a numeric matrix (n by m) where n is the number of vertices and m is the number of time points, hence each column is a time slice and each row is a vertex node.

name

(optional) name of the geometry

Value

An ieeg_surface object; see read_surface or 'Examples'.

Examples

# ---- Simple usage
# vertices only
dodecahedron_vert <- matrix(
  ncol = 3, byrow = TRUE,
  c(-0.62, -0.62, -0.62, 0.62, -0.62, -0.62, -0.62, 0.62, -0.62,
    0.62, 0.62, -0.62, -0.62, -0.62, 0.62, 0.62, -0.62, 0.62,
    -0.62, 0.62, 0.62, 0.62, 0.62, 0.62, 0.00, -0.38, 1.00,
    0.00, 0.38, 1.00, 0.00, -0.38, -1.00, 0.00, 0.38, -1.00,
    -0.38, 1.00, 0.00, 0.38, 1.00, 0.00, -0.38, -1.00, 0.00,
    0.38, -1.00, 0.00, 1.00, 0.00, -0.38, 1.00, 0.00, 0.38,
    -1.00, 0.00, -0.38, -1.00, 0.00, 0.38)
)

point_cloud <- as_ieegio_surface(dodecahedron_vert)
plot(point_cloud, col = "red")

# with face index
dodecahedron_face <- matrix(
  ncol = 3L, byrow = TRUE,
  c(1, 11, 2, 1, 2, 16, 1, 16, 15, 1, 15, 5, 1, 5, 20, 1, 20, 19,
    1, 19, 3, 1, 3, 12, 1, 12, 11, 2, 11, 12, 2, 12, 4, 2, 4, 17,
    2, 17, 18, 2, 18, 6, 2, 6, 16, 3, 13, 14, 3, 14, 4, 3, 4, 12,
    3, 19, 20, 3, 20, 7, 3, 7, 13, 4, 14, 8, 4, 8, 18, 4, 18, 17,
    5, 9, 10, 5, 10, 7, 5, 7, 20, 5, 15, 16, 5, 16, 6, 5, 6, 9,
    6, 18, 8, 6, 8, 10, 6, 10, 9, 7, 10, 8, 7, 8, 14, 7, 14, 13)
)
mesh <- as_ieegio_surface(dodecahedron_vert,
                          faces = dodecahedron_face)
plot(mesh)

# with vertex colors
mesh <- as_ieegio_surface(dodecahedron_vert,
                          faces = dodecahedron_face,
                          vertex_colors = sample(20))
plot(mesh, name = "color")

# with annotations
mesh <- as_ieegio_surface(
  dodecahedron_vert,
  faces = dodecahedron_face,
  annotation_labels = data.frame(
    Key = 1:3,
    Label = c("A", "B", "C"),
    Color = c("red", "green", "blue")
  ),
  annotation_values = data.frame(
    MyVariable = c(rep(1, 7), rep(2, 7), rep(3, 6))
  )
)
plot(mesh, name = "annotations")

# with measurements
mesh <- as_ieegio_surface(
  dodecahedron_vert,
  faces = dodecahedron_face,
  measurements = data.frame(
    MyVariable = dodecahedron_vert[, 1]
  )
)
plot(mesh, name = "measurements",
     col = c("blue", "gray", "red"))

Convert objects to 'ieegio' image volumes

Description

Convert array, path, or 'NIfTI' images in other formats to 'ieegio' image volume instance

Usage

as_ieegio_volume(x, ...)

## S3 method for class 'character'
as_ieegio_volume(x, ...)

## S3 method for class 'ieegio_volume'
as_ieegio_volume(x, ...)

## S3 method for class 'array'
as_ieegio_volume(x, vox2ras = NULL, as_color = is.character(x), ...)

## S3 method for class 'niftiImage'
as_ieegio_volume(x, ...)

## S3 method for class 'nifti'
as_ieegio_volume(x, ...)

## S3 method for class 'ants.core.ants_image.ANTsImage'
as_ieegio_volume(x, ...)

Arguments

x

R object such as array, image path, or objects such as 'RNifti' or 'oro.nifti' image instances

...

passed to other methods

vox2ras

a 4x4 'affine' matrix representing the transform from 'voxel' index (column-row-slice) to 'RAS' (right-anterior-superior) coordinate. This transform is often called 'xform', 'sform', 'qform' in 'NIfTI' terms, or 'Norig' in 'FreeSurfer'

as_color

for converting arrays to volume, whether to treat x as array of colors; default is true when x is a raster matrix ( matrix of color strings) and false when x is not a character array.

Value

An ieegio volume object; see imaging-volume

Examples

shape <- c(50, 50, 50)
vox2ras <- matrix(
  c(-1, 0, 0, 25,
    0, 0, 1, -25,
    0, -1, 0, 25,
    0, 0, 0, 1),
  nrow = 4, byrow = TRUE
)

# continuous
x <- array(rnorm(125000), shape)

volume <- as_ieegio_volume(x, vox2ras = vox2ras)
plot(volume, zoom = 3, pixel_width = 0.5)

# color rgb(a)
x <- array(
  sample(c("red","blue", "green", "cyan", "yellow"),
         12500, replace = TRUE),
  shape
)
rgb <- as_ieegio_volume(x, vox2ras = vox2ras)
plot(rgb, zoom = 3, pixel_width = 0.5)

Burn image at given positions

Description

Burn image at given positions with given color and radius.

Usage

burn_volume(
  image,
  ras_position,
  col = "red",
  radius = 1,
  reshape = FALSE,
  alpha = FALSE,
  blank_underlay = FALSE,
  ...,
  preview = NULL
)

Arguments

image

volume

ras_position

image-defined right-anterior-posterior positions, an nx3 matrix, each row is an 'RAS' coordinate

col

vector of integer or characters, color of each contact

radius

vector of positive number indicating the burning radius

reshape

whether to reshape the image at a different resolution; default is false; can be TRUE (image resolution will be doubled), a single number (size of isotropic volume along one side), or a length of three defining the new shape.

alpha

whether to include alpha (transparent) channel. Default is false for compatibility concerns (legacy software might not support reading alpha channel). In this case, the background will be black. If alpha=TRUE is set, then the background will be fully transparent.

blank_underlay

whether to use blank image or the input image as underlay; default is FALSE (using image as underlay); alternative is TRUE, and use black or transparent background

...

passed to as_ieegio_volume, useful if image is an array

preview

indices (integer) of the position to visualize; default is NULL (no preview)

Value

Color image that is burnt; see imaging-volume.

Examples

if(interactive()) {

dim <- c(6, 6, 6)
image <- as_ieegio_volume(
  array(rnorm(prod(dim)), dim),
  vox2ras = rbind(cbind(diag(1, 3), -dim / 2),
                  c(0, 0, 0, 1))
)

ras_positions <- rbind(c(1, -1, 1.5), c(-2.25, -1, -0.75))


burned <- burn_volume(
  image,
  ras_positions,
  col = c("red", "green"),
  radius = 0.5,
  reshape = c(24, 24, 24)
)

plot(
  burned,
  position = ras_positions[1, ],
  zoom = 15,
  pixel_width = 0.25
)

}

Download sample files

Description

Download sample files

Usage

ieegio_sample_data(file, test = FALSE, cache_ok = TRUE)

Arguments

file

file to download; set to NULL to view all possible files

test

test whether the sample file exists instead of downloading them; default is FALSE

cache_ok

whether to use cache

Value

When test is false, returns downloaded file path (character); when test is true, returns whether the expected sample exists (logical).

Examples

# list available files
ieegio_sample_data()

# check if file edfPlusD.edf exists
ieegio_sample_data("edfPlusD.edf", test = TRUE)

## Not run: 

ieegio_sample_data("edfPlusD.edf")


## End(Not run)

Read and write surface files

Description

Supports surface geometry, annotation, measurement, and time-series data. Please use the high-level function read_surface, which calls other low-level functions internally.

Usage

read_surface(file, format = "auto", type = NULL, ...)

write_surface(
  x,
  con,
  format = c("gifti", "freesurfer"),
  type = c("geometry", "annotations", "measurements", "color", "time_series"),
  ...
)

io_read_fs(
  file,
  type = c("geometry", "annotations", "measurements"),
  format = "auto",
  name = basename(file),
  ...
)

io_read_gii(file)

io_write_gii(x, con, ...)

Arguments

file, con

path the file

format

format of the file, see 'Arguments' section in read.fs.surface (when file type is 'geometry') and read.fs.curv (when file type is 'measurements')

type

type of the data; ignored if the file format is 'GIfTI'. For 'FreeSurfer' files, supported types are

'geometry'

contains positions of mesh vertex nodes and face indices;

'annotations'

annotation file (usually with file extension 'annot') containing a color look-up table and an array of color keys. These files are used to display discrete values on the surface such as brain atlas;

'measurements'

measurement file such as 'sulc' and 'curv' files, containing numerical values (often with continuous domain) for each vertex node

...

for read_surface, the arguments will be passed to io_read_fs if the file is a 'FreeSurfer' file.

x

surface (geometry, annotation, measurement) data

name

name of the data; default is the file name

Value

A surface object container for read_surface, and the file path for write_surface

Examples

library(ieegio)

# geometry
geom_file <- "gifti/GzipBase64/sujet01_Lwhite.surf.gii"

# measurements
shape_file <- "gifti/GzipBase64/sujet01_Lwhite.shape.gii"

# time series
ts_file <- "gifti/GzipBase64/fmri_sujet01_Lwhite_projection.time.gii"

if(ieegio_sample_data(geom_file, test = TRUE)) {

  geometry <- read_surface(ieegio_sample_data(geom_file))
  print(geometry)

  measurement <- read_surface(ieegio_sample_data(shape_file))
  print(measurement)

  time_series <- read_surface(ieegio_sample_data(ts_file))
  print(time_series)

  # merge measurement & time_series into geometry
  merged <- merge(geometry, measurement, time_series)
  print(merged)

  # make sure you install `rgl` package
  plot(merged, name = c("measurements", "Shape001"))

  plot(merged, name = "time_series",
       slice_index = c(1, 11, 21, 31))

}

Read and write volume data

Description

Read and write volume data ('MRI', 'CT', etc.) in 'NIfTI' or 'MGH' formats. Please use read_volume and write_volume for high-level function. These functions will call other low-level functions internally.

Usage

read_volume(file, header_only = FALSE, format = c("auto", "nifti", "mgh"), ...)

write_volume(x, con, format = c("auto", "nifti", "mgh"), ...)

io_read_mgz(file, header_only = FALSE)

io_write_mgz(x, con, ...)

## S3 method for class 'ieegio_volume'
io_write_mgz(x, con, ...)

## S3 method for class 'ieegio_mgh'
io_write_mgz(x, con, ...)

## S3 method for class 'nifti'
io_write_mgz(x, con, ...)

## S3 method for class 'niftiImage'
io_write_mgz(x, con, ...)

## S3 method for class 'ants.core.ants_image.ANTsImage'
io_write_mgz(x, con, ...)

## S3 method for class 'array'
io_write_mgz(x, con, vox2ras = NULL, ...)

io_read_nii(
  file,
  method = c("rnifti", "oro", "ants"),
  header_only = FALSE,
  ...
)

io_write_nii(x, con, ...)

## S3 method for class 'ieegio_nifti'
io_write_nii(x, con, ...)

## S3 method for class 'ants.core.ants_image.ANTsImage'
io_write_nii(x, con, ...)

## S3 method for class 'niftiImage'
io_write_nii(x, con, ...)

## S3 method for class 'nifti'
io_write_nii(x, con, gzipped = NA, ...)

## S3 method for class 'ieegio_mgh'
io_write_nii(x, con, ...)

## S3 method for class 'array'
io_write_nii(
  x,
  con,
  vox2ras = NULL,
  datatype_code = NULL,
  xyzt_units = c("NIFTI_UNITS_MM", "NIFTI_UNITS_SEC"),
  intent_code = "NIFTI_INTENT_NONE",
  ...,
  gzipped = NA
)

Arguments

file

file path to read volume data

header_only

whether to read header data only; default is FALSE

format

format of the file to be written; choices are 'auto', 'nifti' or 'mgh'; default is to 'auto' detect the format based on file names, which will save as a 'MGH' file when file extension is 'mgz' or 'mgh', otherwise 'NIfTI' format. We recommend explicitly setting this argument

...

passed to other methods

x

volume data (such as 'NIfTI' image, array, or 'MGH') to be saved

con

file path to store image

vox2ras

a 4x4 transform matrix from voxel indexing (column, row, slice) to scanner (often 'T1-weighted' image) 'RAS' (right-anterior-superior) coordinate

method

method to read the file; choices are 'oro' (using readNIfTI), 'rnifti' (using readNifti), and 'ants' (using as_ANTsImage).

gzipped

for writing 'nii' data: whether the file needs to be compressed; default is inferred from the file name. When the file ends with 'nii', then no compression is used; otherwise the file will be compressed. If the file name does not end with 'nii' nor 'nii.gz', then the file extension will be added automatically.

datatype_code, xyzt_units, intent_code

additional flags for 'NIfTI' headers, for advanced users

Format

format of the file; default is auto-detection, other choices are 'nifti' and 'mgh';

Value

Imaging readers return ieegio_volume objects. The writers return the file path to where the file is saved to.

Examples

library(ieegio)

nifti_file <- "brain.demosubject.nii.gz"

# Use `ieegio_sample_data(nifti_file)`
#   to download sample data


if( ieegio_sample_data(nifti_file, test = TRUE) ) {

# ---- NIfTI examples ---------------------------------------------

file <- ieegio_sample_data(nifti_file)

# basic read
vol <- read_volume(file)

# voxel to scanner RAS
vol$transforms$vox2ras

# to freesurfer surface
vol$transforms$vox2ras_tkr

# to FSL
vol$transforms$vox2fsl

plot(vol, position = c(10, 0, 30))

# ---- using other methods --------------------------------------
# default
vol <- read_volume(file, method = "rnifti", format = "nifti")
vol$header

# lazy-load nifti
vol2 <- read_volume(file, method = "oro", format = "nifti")
vol2$header

## Not run: 
# requires additional python environment

# Using ANTsPyx
vol3 <- read_volume(file, method = "ants", format = "nifti")
vol3$header


## End(Not run)

# ---- write --------------------------------------------------------

# write as NIfTI
f <- tempfile(fileext = ".nii.gz")

write_volume(vol, f, format = "nifti")

# alternative method
write_volume(vol$header, f, format = "nifti")

# write to mgz/mgh
f2 <- tempfile(fileext = ".mgz")

write_volume(vol, f, format = "mgh")

# clean up
unlink(f)
unlink(f2)

}

Check whether a 'HDF5' file can be opened for read/write

Description

Check whether a 'HDF5' file can be opened for read/write

Usage

io_h5_valid(file, mode = c("r", "w"), close_all = FALSE)

io_h5_names(file)

Arguments

file

path to file

mode

'r' for read access and 'w' for write access

close_all

whether to close all connections or just close current connection; default is false. Set this to TRUE if you want to close all other connections to the file

Value

io_h5_valid returns a logical value indicating whether the file can be opened. io_h5_names returns a character vector of dataset names.

Examples

x <- array(1:27, c(3,3,3))
f <- tempfile()

# No data written to the file, hence invalid
io_h5_valid(f, 'r')

io_write_h5(x, f, 'dset')
io_h5_valid(f, 'w')

# Open the file and hold a connection
ptr <- hdf5r::H5File$new(filename = f, mode = 'w')

# Can read, but cannot write
io_h5_valid(f, 'r')  # TRUE
io_h5_valid(f, 'w')  # FALSE

# However, this can be reset via `close_all=TRUE`
io_h5_valid(f, 'r', close_all = TRUE)
io_h5_valid(f, 'w')  # TRUE

# Now the connection is no longer valid
ptr

# clean up
unlink(f)

Lazy Load 'HDF5' File via hdf5r-package

Description

Wrapper for class LazyH5, which load data with "lazy" mode - only read part of dataset when needed.

Usage

io_read_h5(file, name, read_only = TRUE, ram = FALSE, quiet = FALSE)

Arguments

file

'HDF5' file

name

group/data_name path to dataset (H5D data)

read_only

only used if ram=FALSE, whether the returned LazyH5 instance should be read only

ram

load data to memory immediately, default is false

quiet

whether to suppress messages

Value

If ram is true, then return data as arrays, otherwise return a LazyH5 instance.

See Also

io_write_h5

Examples

file <- tempfile()
x <- array(1:120, dim = c(4,5,6))

# save x to file with name /group/dataset/1
io_write_h5(x, file, '/group/dataset/1', quiet = TRUE)

# read data
y <- io_read_h5(file, '/group/dataset/1', ram = TRUE)
class(y)   # array

z <- io_read_h5(file, '/group/dataset/1', ram = FALSE)
class(z)   # LazyH5

dim(z)

# clean up
unlink(file)

Save objects to 'HDF5' file without trivial checks

Description

Save objects to 'HDF5' file without trivial checks

Usage

io_write_h5(
  x,
  file,
  name,
  chunk = "auto",
  level = 4,
  replace = TRUE,
  new_file = FALSE,
  ctype = NULL,
  quiet = FALSE,
  ...
)

Arguments

x

an array, a matrix, or a vector

file

path to 'HDF5' file

name

path/name of the data; for example, "group/data_name"

chunk

chunk size

level

compress level from 0 - no compression to 10 - max compression

replace

should data be replaced if exists

new_file

should removing the file if old one exists

ctype

data type such as "character", "integer", or "numeric". If set to NULL then automatically detect types. Note for complex data please store separately the real and imaginary parts.

quiet

whether to suppress messages, default is false

...

passed to other LazyH5$save

Value

Absolute path of the file saved

See Also

io_read_h5

Examples

file <- tempfile()
x <- array(1:120, dim = 2:5)

# save x to file with name /group/dataset/1
io_write_h5(x, file, '/group/dataset/1', chunk = dim(x))

# load data
y <- io_read_h5(file, '/group/dataset/1')

# read data to memory
y[]

# clean up
unlink(file)

Lazy 'HDF5' file loader

Description

Provides hybrid data structure for 'HDF5' file. The class is not intended for direct-use. Please see io_read_h5 and io_write_h5.

Public fields

quiet

whether to suppress messages

Methods

Public methods


Method finalize()

garbage collection method

Usage
LazyH5$finalize()
Returns

none


Method print()

overrides print method

Usage
LazyH5$print()
Returns

self instance


Method new()

constructor

Usage
LazyH5$new(file_path, data_name, read_only = FALSE, quiet = FALSE)
Arguments
file_path

where data is stored in 'HDF5' format

data_name

the data stored in the file

read_only

whether to open the file in read-only mode. It's highly recommended to set this to be true, otherwise the file connection is exclusive.

quiet

whether to suppress messages, default is false

Returns

self instance


Method save()

save data to a 'HDF5' file

Usage
LazyH5$save(
  x,
  chunk = "auto",
  level = 7,
  replace = TRUE,
  new_file = FALSE,
  force = TRUE,
  ctype = NULL,
  size = NULL,
  ...
)
Arguments
x

vector, matrix, or array

chunk

chunk size, length should matches with data dimension

level

compress level, from 1 to 9

replace

if the data exists in the file, replace the file or not

new_file

remove the whole file if exists before writing?

force

if you open the file in read-only mode, then saving objects to the file will raise error. Use force=TRUE to force write data

ctype

data type, see mode, usually the data type of x. Try mode(x) or storage.mode(x) as hints.

size

deprecated, for compatibility issues

...

passed to self open() method


Method open()

open connection

Usage
LazyH5$open(new_dataset = FALSE, robj, ...)
Arguments
new_dataset

only used when the internal pointer is closed, or to write the data

robj

data array to save

...

passed to createDataSet in hdf5r package


Method close()

close connection

Usage
LazyH5$close(all = TRUE)
Arguments
all

whether to close all connections associated to the data file. If true, then all connections, including access from other programs, will be closed


Method subset()

subset data

Usage
LazyH5$subset(..., drop = FALSE, stream = FALSE, envir = parent.frame())
Arguments
drop

whether to apply drop the subset

stream

whether to read partial data at a time

envir

if i,j,... are expressions, where should the expression be evaluated

i, j, ...

index along each dimension

Returns

subset of data


Method get_dims()

get data dimension

Usage
LazyH5$get_dims(stay_open = TRUE)
Arguments
stay_open

whether to leave the connection opened

Returns

dimension of the array


Method get_type()

get data type

Usage
LazyH5$get_type(stay_open = TRUE)
Arguments
stay_open

whether to leave the connection opened

Returns

data type, currently only character, integer, raw, double, and complex are available, all other types will yield "unknown"


Low-level file read and write

Description

Interfaces to read from or write to files with common formats.

Usage

io_read_fst(
  con,
  method = c("proxy", "data_table", "data_frame", "header_only"),
  ...,
  old_format = FALSE
)

io_write_fst(x, con, compress = 50, ...)

io_read_ini(con, ...)

io_read_json(con, ...)

io_write_json(
  x,
  con = stdout(),
  ...,
  digits = ceiling(-log10(.Machine$double.eps)),
  pretty = TRUE,
  serialize = TRUE
)

io_read_mat(
  con,
  method = c("auto", "R.matlab", "pymatreader", "mat73"),
  verbose = TRUE,
  on_convert_error = c("warning", "error", "ignore"),
  ...
)

io_write_mat(x, con, method = c("R.matlab", "scipy"), ...)

io_read_yaml(con, ...)

io_write_yaml(x, con, ..., sorted = FALSE)

Arguments

con

connection or file

method

method to read table. For 'fst', the choices are

'proxy'

do not read data to memory, query the table when needed;

'data_table'

read as data.table;

'data_frame'

read as data.frame;

'header_only'

read 'fst' table header.

For 'mat', the choices are

'auto'

automatically try the native option, and then 'pymatreader' if fails;

'R.matlab'

use the native method (provided by readMat); only support 'MAT 5.0' format;

'pymatreader'

use 'Python' library 'pymatreader';

'mat73'

use 'Python' library 'mat73'.

...

passed to internal function calls

old_format

see fst

x

data to write to disk

compress

compress level from 0 to 100; default is 50

digits, pretty

for writing numeric values to 'json' format

serialize

set to TRUE to serialize the data to 'json' format (with the data types, default); or FALSE to save the values without types

verbose

whether to print out the process

on_convert_error

for reading 'mat' files with 'Python' modules, the results will be converted to R objects in the end. Not all objects can be converted. This input defines the behavior when the conversion fails; choices are "error", "warning", or "ignore"

sorted

whether to sort the list; default is FALSE

Value

The reader functions returns the data extracted from files, mostly as R objects, with few exceptions on some 'Matlab' files. When reading a 'Matlab' file requires using 'Python' modules, io_read_mat will try its best effort to convert 'Python' objects to R. However, such conversion might fail. In this case, the result might partially contain 'Python' objects with warnings.

Examples

# ---- fst ----------------------------------------------------------------


f <- tempfile(fileext = ".fst")
x <- data.frame(
  a = 1:10,
  b = rnorm(10),
  c = letters[1:10]
)

io_write_fst(x, con = f)

# default reads in proxy
io_read_fst(f)

# load as data.table
io_read_fst(f, "data_table")

# load as data.frame
io_read_fst(f, "data_frame")

# get header
io_read_fst(f, "header_only")

# clean up
unlink(f)



# ---- json ---------------------------------------------------------------
f <- tempfile(fileext = ".json")

x <- list(a = 1L, b = 2.3, c = "a", d = 1+1i)

# default is serialize
io_write_json(x, f)

io_read_json(f)

cat(readLines(f), sep = "\n")

# just values
io_write_json(x, f, serialize = FALSE, pretty = FALSE)

io_read_json(f)

cat(readLines(f), sep = "\n")

# clean up
unlink(f)



# ---- Matlab .mat --------------------------------------------------------

## Not run: 

f <- tempfile(fileext = ".mat")

x <- list(a = 1L, b = 2.3, c = "a", d = 1+1i)

# save as MAT 5.0
io_write_mat(x, f)

io_read_mat(f)

# require setting up Python environment

io_read_mat(f, method = "pymatreader")

# MAT 7.3 example
sample_data <- ieegio_sample_data("mat_v73.mat")
io_read_mat(sample_data)

# clean up
unlink(f)


## End(Not run)



# ---- yaml ---------------------------------------------------------------

f <- tempfile(fileext = ".yaml")

x <- list(a = 1L, b = 2.3, c = "a")
io_write_yaml(x, f)

io_read_yaml(f)

# clean up
unlink(f)

Creates a NWBHDF5IO file container

Description

Class definition for 'PyNWB' container; use read_nwb for construction function.

Active bindings

opened

Whether the container is opened.

Methods

Public methods


Method new()

Initialize the class

Usage
NWBHDF5IO$new(path = NULL, mode = c("r", "w", "r+", "a", "w-", "x"), ...)
Arguments
path

Path to a '.nwb' file

mode

Mode for opening the file

...

Other parameters passed to nwb$NWBHDF5IO


Method get_handler()

Get internal file handler. Please make sure you close the handler correctly.

Usage
NWBHDF5IO$get_handler()
Returns

File handler, i.e. 'PyNWB' NWBHDF5IO instance.


Method open()

Open the connections, must be used together with $close method. For high-level method, see $with

Usage
NWBHDF5IO$open()
Returns

container itself

Examples
\dontrun{

# low-level method to open NWB file, for safer methods, see
# `container$with()` below

container$open()

data <- container$read()

# process data...

# Make sure the container is closed!
container$close()

}

Method close()

Close the connections (low-level method, see 'with' method below)

Usage
NWBHDF5IO$close(close_links = TRUE)
Arguments
close_links

Whether to close all files linked to from this file; default is true

Returns

Nothing


Method close_linked_files()

Close all opened, linked-to files. 'MacOS' and 'Linux' automatically release the linked-to file after the linking file is closed, but 'Windows' does not, which prevents the linked-to file from being deleted or truncated. Use this method to close all opened, linked-to files.

Usage
NWBHDF5IO$close_linked_files()
Returns

Nothing


Method read()

Read the 'NWB' file from the 'IO' source. Please use along with '$with' method

Usage
NWBHDF5IO$read()
Returns

'NWBFile' container


Method with()

Safe wrapper for reading and handling 'NWB' file. See class examples.

Usage
NWBHDF5IO$with(expr, quoted = FALSE, envir = parent.frame())
Arguments
expr

R expression to evaluate

quoted

Whether expr is quoted; default is false

envir

environment for expr to evaluate; default is the parent frame (see parent.frame)

Returns

Whatever results generated by expr

Examples
\dontrun{

container$with({
  data <- container$read()
  # process data
})

}

Method clone()

The objects of this class are cloneable with this method.

Usage
NWBHDF5IO$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## Not run: 

# Running this example requires a .nwb file

library(rnwb)
container <- NWBHDF5IO$new(path = file)
container$with({

  data <- container$read()
  electrode_table <- data$electrodes[convert = TRUE]

})

print(electrode_table)


## End(Not run)

## ------------------------------------------------
## Method `NWBHDF5IO$open`
## ------------------------------------------------

## Not run: 

# low-level method to open NWB file, for safer methods, see
# `container$with()` below

container$open()

data <- container$read()

# process data...

# Make sure the container is closed!
container$close()


## End(Not run)

## ------------------------------------------------
## Method `NWBHDF5IO$with`
## ------------------------------------------------

## Not run: 

container$with({
  data <- container$read()
  # process data
})


## End(Not run)

Plot '3D' surface objects

Description

Plot '3D' surface objects

Usage

## S3 method for class 'ieegio_surface'
plot(
  x,
  method = c("auto", "r3js", "rgl_basic", "rgl_full"),
  transform = 1L,
  name = "auto",
  vlim = NULL,
  col = c("black", "white"),
  slice_index = NULL,
  ...
)

Arguments

x

'ieegio_surface' object, see read_surface

method

plot method; 'basic' for just rendering the surfaces; 'full' for rendering with axes and title

transform

which transform to use, can be a 4-by-4 matrix; if the surface contains transform matrix, then this argument can be an integer index of the transform embedded, or the target (transformed) space name; print names(x$transforms) for choices

name

attribute and name used for colors, options can be 'color' if the surface has color matrix; c('annotations', varname) for rendering colors from annotations with variable varname; c('measurements', varname) for rendering colors from measurements with variable varname; 'time_series' for plotting time series slices; or "flat" for flat color; default is 'auto', which will plot the first available data. More details see 'Examples'.

vlim

when plotting with continuous data (name is measurements or time-series), the value limit used to generate color palette; default is NULL: the range of the values. This argument can be length of 1 ( creating symmetric value range) or 2. If set, then values exceeding the range will be trimmed to the limit

col

color or colors to form the color palette when value data is continuous; when name="flat", the last color will be used

slice_index

when plotting the name="time_series" data, the slice indices to plot; default is to select a maximum of 4 slices

...

ignored

Examples

library(ieegio)

# geometry
geom_file <- "gifti/GzipBase64/sujet01_Lwhite.surf.gii"

# measurements
shape_file <- "gifti/GzipBase64/sujet01_Lwhite.shape.gii"

# time series
ts_file <- "gifti/GzipBase64/fmri_sujet01_Lwhite_projection.time.gii"

if(ieegio_sample_data(geom_file, test = TRUE)) {

  geometry <- read_surface(ieegio_sample_data(geom_file))
  measurement <- read_surface(ieegio_sample_data(shape_file))
  time_series <- read_surface(ieegio_sample_data(ts_file))
  ts_demean <- apply(
    time_series$time_series$value,
    MARGIN = 1L,
    FUN = function(x) {
      x - mean(x)
    }
  )
  time_series$time_series$value <- t(ts_demean)

  # merge measurement & time_series into geometry (optional)
  merged <- merge(geometry, measurement, time_series)
  print(merged)

  # ---- plot method/style ------------------------------------
  plot(merged)

  # ---- plot data --------------------------------------------

  ## Measurements or annotations

  # the first column of `measurements`
  plot(merged, name = "measurements")

  # equivalent to
  plot(merged, name = list("measurements", 1L))

  # equivalent to
  measurement_names <- names(merged$measurements$data_table)
  plot(merged, name = list("measurements", measurement_names[[1]]))

  ## Time-series

  # automatically select 4 slices, trim the color palette
  # from -25 to 25
  plot(merged, name = "time_series", vlim = c(-25, 25),
       slice_index = 1L)

  plot(
    merged,
    name = "time_series",
    vlim = c(-25, 25),
    slice_index = 64,
    col = c("#053061", "#2166ac", "#4393c3",
            "#92c5de", "#d1e5f0", "#ffffff",
            "#fddbc7", "#f4a582", "#d6604d",
            "#b2182b", "#67001f")
  )


}

Plot '3D' volume in anatomical slices

Description

Plot '3D' volume in anatomical slices

Usage

## S3 method for class 'ieegio_volume'
plot(
  x,
  position = c(0, 0, 0),
  center_position = FALSE,
  which = c("coronal", "axial", "sagittal"),
  slice_index = 1L,
  transform = "vox2ras",
  zoom = 1,
  pixel_width = max(zoom/2, 1),
  col = c("black", "white"),
  alpha = NA,
  crosshair_gap = 4,
  crosshair_lty = 2,
  crosshair_col = "#00FF00A0",
  label_col = crosshair_col,
  continuous = TRUE,
  vlim = NULL,
  add = FALSE,
  main = "",
  axes = FALSE,
  background = col[[1]],
  foreground = col[[length(col)]],
  ...,
  .xdata = x$data
)

Arguments

x

'ieegio_volume' object; see read_volume

position

position in 'RAS' (right-anterior-superior) coordinate system on which cross-hair should focus

center_position

whether to center canvas at position, default is FALSE

which

which slice to plot; choices are "coronal", "axial", and "sagittal"

slice_index

length of 1: if x has fourth dimension (e.g. 'fMRI'), then which slice index to draw

transform

which transform to apply, can be a 4-by-4 matrix, an integer or name indicating the matrix in x$transforms; this needs to be the transform matrix from voxel index to 'RAS' (right-anterior-superior coordinate system), often called 'xform', 'sform', 'qform' in 'NIfTI' terms, or 'Norig' in 'FreeSurfer'

zoom

zoom-in level

pixel_width

pixel size, ranging from 0.05 to 50; default is the half of zoom or 1, whichever is greater; the unit of pixel_width divided by zoom is milliliter

col

color palette for continuous x values

alpha

opacity value if the image is to be displayed with transparency

crosshair_gap

the cross-hair gap in milliliter

crosshair_lty

the cross-hair line type

crosshair_col

the cross-hair color; set to NA to hide

label_col

the color of anatomical axis labels (i.e. "R" for right, "A" for anterior, and "S" for superior); default is the same as crosshair_col

continuous

reserved

vlim

the range limit of the data; default is computed from range of x$data; data values exceeding the range will be trimmed

add

whether to add the plot to existing underlay; default is FALSE

main, ...

passed to image

axes

whether to draw axes; default is FALSE

background, foreground

background and foreground colors; default is the first and last elements of col

.xdata

default is x$data, used to speed up the calculation when multiple different angles are to be plotted

Examples

library(ieegio)

nifti_file <- "nifti/rnifti_example.nii.gz"
nifti_rgbfile <- "nifti/rnifti_example_rgb.nii.gz"

# Use
#   `ieegio_sample_data(nifti_file)`
# and
#   `ieegio_sample_data(nifti_rgbfile)`
# to download sample data


if(
  ieegio_sample_data(nifti_file, test = TRUE) &&
  ieegio_sample_data(nifti_rgbfile, test = TRUE)
) {

# ---- NIfTI examples ---------------------------------------------

underlay_path <- ieegio_sample_data(nifti_file)
overlay_path <- ieegio_sample_data(nifti_rgbfile)

# basic read
underlay <- read_volume(underlay_path)
overlay <- read_volume(overlay_path)

par(mfrow = c(1, 3), mar = c(0, 0, 3.1, 0))

ras_position <- c(50, -10, 15)

ras_str <- paste(sprintf("%.0f", ras_position), collapse = ",")

for(which in c("coronal", "axial", "sagittal")) {
  plot(x = underlay, position = ras_position, crosshair_gap = 10,
       crosshair_lty = 2, zoom = 3, which = which,
       main = sprintf("%s T1RAS=[%s]", which, ras_str))
  plot(x = overlay, position = ras_position,
       crosshair_gap = 10, label_col = NA,
       add = TRUE, alpha = 0.9, zoom = 5, which = which)
}


}

Install 'NWB' via 'pynwb'

Description

Install 'NWB' via 'pynwb'

Usage

install_pynwb(python_ver = "auto", verbose = TRUE)

pynwb_module(force = FALSE, error_if_missing = TRUE)

Arguments

python_ver

'Python' version, see configure_conda; default is "auto", which is suggested

verbose

whether to print the installation messages

force

whether to force-reload the module

error_if_missing

whether to raise errors when the module fails to load; default is true

Value

A 'Python' module pynwb.


Read 'BCI2000' data file

Description

Read 'BCI2000' data file

Usage

read_bci2000(
  file,
  extract_path = getOption("ieegio.extract_path", NULL),
  header_only = FALSE,
  cache_ok = TRUE,
  verbose = TRUE
)

Arguments

file

file path to the data file

extract_path

location to where the extracted information is to be stored

header_only

whether to only load header data

cache_ok

whether existing cache should be reused; default is TRUE. This input can speed up reading large data files; set to FALSE to delete cache before importing.

verbose

whether to print processing messages; default is TRUE

Value

A cached object that is readily to be loaded to memory; see SignalDataCache for class definition.

Examples

if( ieegio_sample_data("bci2k.dat", test = TRUE) ) {
  file <- ieegio_sample_data("bci2k.dat")

  x <- read_bci2000(file)
  print(x)

  channel <- x$get_channel(1)

  plot(
    channel$time,
    channel$value,
    type = "l",
    main = channel$info$Label,
    xlab = "Time",
    ylab = channel$info$Unit
  )
}

Read 'BrainVision' data

Description

Read 'BrainVision' data

Usage

read_brainvis(
  file,
  extract_path = getOption("ieegio.extract_path", NULL),
  header_only = FALSE,
  cache_ok = TRUE,
  verbose = TRUE
)

Arguments

file

file path to the data file

extract_path

location to where the extracted information is to be stored

header_only

whether to only load header data

cache_ok

whether existing cache should be reused; default is TRUE. This input can speed up reading large data files; set to FALSE to delete cache before importing.

verbose

whether to print processing messages; default is TRUE

Value

A cached object that is readily to be loaded to memory; see SignalDataCache for class definition.

Examples

if( ieegio_sample_data("brainvis.dat", test = TRUE) ) {
  # ensure the header and marker files are downloaded as well
  ieegio_sample_data("brainvis.vhdr")
  ieegio_sample_data("brainvis.dat")
  file <- ieegio_sample_data("brainvis.vmrk")

  x <- read_brainvis(file)
  print(x)

  x$get_header()

  x$get_channel_table()

  x$get_annotations()

  channel <- x$get_channel(10)

  plot(
    channel$time,
    channel$value,
    type = "l",
    main = channel$info$Label,
    xlab = "Time",
    ylab = channel$info$Unit
  )
}

Read 'EDF' or 'BDF' data file

Description

Read 'EDF' or 'BDF' data file

Usage

read_edf(
  con,
  extract_path = getOption("ieegio.extract_path", NULL),
  header_only = FALSE,
  cache_ok = TRUE,
  begin = 0,
  end = Inf,
  convert = TRUE,
  verbose = TRUE
)

Arguments

con

file or connection to the data file

extract_path

location to where the extracted information is to be stored

header_only

whether to only load header data

cache_ok

whether existing cache should be reused; default is TRUE. This input can speed up reading large data files; set to FALSE to delete cache before importing.

begin, end

begin and end of the data to read

convert

whether to convert digital numbers to analog signals; default is TRUE

verbose

whether to print processing messages; default is TRUE

Value

A cached object that is readily to be loaded to memory; see SignalDataCache for class definition.

Examples

# ---- EDF/BDF(+) ---------------------------------------------------------

# Run `ieegio_sample_data("edfPlusD.edf")` to download sample data

# Tun example if the sample data exists
if(ieegio_sample_data("edfPlusD.edf", test = TRUE)) {

  edf_path <- ieegio_sample_data("edfPlusD.edf")

  data <- read_edf(edf_path)

  data$get_header()

  data$get_annotations()

  data$get_channel_table()

  channel <- data$get_channel(1)

  plot(
    channel$time,
    channel$value,
    type = "l",
    main = channel$info$Label,
    xlab = "Time",
    ylab = channel$info$Unit
  )

}

Read ('BlackRock') 'NEV' 'NSx' data

Description

Read ('BlackRock') 'NEV' 'NSx' data

Usage

read_nsx(
  file,
  extract_path = getOption("ieegio.extract_path", NULL),
  header_only = FALSE,
  cache_ok = TRUE,
  include_waveform = FALSE,
  verbose = TRUE
)

Arguments

file

file path to the data file

extract_path

location to where the extracted information is to be stored

header_only

whether to only load header data

cache_ok

whether existing cache should be reused; default is TRUE. This input can speed up reading large data files; set to FALSE to delete cache before importing.

include_waveform

whether to include 'waveform' data (usually for online spike sorting); default is FALSE

verbose

whether to print processing messages; default is TRUE

Value

A cached object that is readily to be loaded to memory; see SignalDataCache for class definition.


Read 'NWB' format

Description

Life cycle: experimental. Read "Neurodata Without Borders" ('NWB' format) file. Unlike other readers read_nwb returns low-level 'Python' class handler via pynwb module.

Usage

read_nwb(file, mode = c("r", "w", "r+", "a", "w-", "x"), ...)

Arguments

file

path to 'NWB' file

mode

file open mode; default is 'r' (read-only)

...

passed to NWBHDF5IO initialize function

Value

A NWBHDF5IO instance

Examples

if(ieegio_sample_data("nwb_sample.nwb", test = TRUE)) {
  file <- ieegio_sample_data("nwb_sample.nwb")

  # Create NWBIO container
  container <- read_nwb(file)

  # Open connection
  container$open()

  # read meta data
  data <- container$read()
  data

  # get `test_timeseries` data
  ts_data <- data$get_acquisition("test_timeseries")
  ts_data

  # read timeseries data into memory
  ts_arr <- ts_data$data[]
  ts_arr

  # Convert Python array to R
  # using `rpymat::py_to_r(ts_arr)` or
  as.numeric(ts_arr)

  # Make sure you close the connection
  container$close()

}


# Requires setting up Python environment
# run `ieegio::install_pynwb()` to set up environment first

## Not run: 


# Replicating tutorial
# https://pynwb.readthedocs.io/en/stable/tutorials/general/plot_file.html

library(rpymat)

# Load Python module
pynwb <- import("pynwb")
uuid <- import("uuid")
datetime <- import("datetime")
np <- import("numpy")
tz <- import("dateutil.tz")



# 2018L is 2018 as integer
session_start_time <- datetime$datetime(
  2018L, 4L, 25L, 2L, 30L, 3L,
  tzinfo=tz$gettz("US/Pacific"))

#  ---- Create NWB file object ------------------------
nwbfile <- pynwb$NWBFile(
  session_description="Mouse exploring a closed field",
  identifier=py_str(uuid$uuid4()),
  session_start_time=session_start_time,
  session_id="session_4321",
  experimenter=py_list(c("Baggins, Frodo")),
  lab="Bag End Laboratory",
  institution="University of Middle Earth at the Shire",
  experiment_description="Thank you Bilbo Baggins.",
  keywords=py_list(c("behavior", "exploration"))
)

# ---- Add subject ------------------------------------
subject <- pynwb$file$Subject(
  subject_id="001",
  age="P90D",
  description="mouse 5",
  species="Mus musculus",
  sex="M"
)

nwbfile$subject <- subject

nwbfile

# ---- Add TimeSeries ------------------------------------
data <- seq(100, 190, by = 10)
time_series_with_rate <- pynwb$TimeSeries(
  name="test_timeseries",
  description="an example time series",
  data=data,
  unit="m",
  starting_time=0.0,
  rate=1.0
)
time_series_with_rate

nwbfile$add_acquisition(time_series_with_rate)

# ---- New Spatial positions ------------------------------------
position_data <- cbind(
  seq(0, 10, length.out = 50),
  seq(0, 9, length.out = 50)
)
position_timestamps = seq(0, 49) / 200

spatial_series_obj = pynwb$behavior$SpatialSeries(
  name="SpatialSeries",
  description="(x,y) position in open field",
  data=position_data,
  timestamps=position_timestamps,
  reference_frame="(0,0) is bottom left corner",
)
spatial_series_obj

position_obj = pynwb$behavior$Position(
  spatial_series=spatial_series_obj)
position_obj

# ---- Behavior Processing Module ------------------------------
behavior_module <- nwbfile$create_processing_module(
  name="behavior", description="processed behavioral data"
)
behavior_module$add(position_obj)

nwbfile$processing$behavior

# omit some process

# ---- Write ---------------------------------------------------
f <- normalizePath(tempfile(fileext = ".nwb"),
                   winslash = "/",
                   mustWork = FALSE)
io <- pynwb$NWBHDF5IO(f, mode = "w")
io$write(nwbfile)
io$close()




## End(Not run)

Down-sample or super-sample volume

Description

Using nearest-neighbor.

Usage

resample_volume(x, new_dim, na_fill = NA)

Arguments

x

image volume

new_dim

new dimension

na_fill

value to fill if missing

Value

A new volume with desired shape

Examples

# ---- Toy example ----------------------------

dm <- c(6, 6, 6)
arr <- array(seq_len(prod(dm)) + 0.5, dm)
orig <- as_ieegio_volume(
  arr, vox2ras = cbind(diag(1, nrow = 4, ncol = 3), c(-dm / 2, 1)))

# resample
downsampled <- resample_volume(orig, new_dim = c(3, 3, 3))
dim(downsampled)

# up-sample on coronal
upsampled <- resample_volume(orig, new_dim = c(20, 20, 24))
dim(upsampled)

par(mfrow = c(2, 2), mar = c(0, 0, 2.1, 0.1))
plot(orig, pixel_width = 0.5, zoom = 20, main = "Original")
plot(downsampled, pixel_width = 0.5, zoom = 20, main = "Down-sampled")
plot(upsampled, pixel_width = 0.5, zoom = 20, main = "Super-sampled")
plot(
  orig,
  main = "Overlay super-sample (diff)",
  col = c("black", "white"),
  pixel_width = 0.5, zoom = 20
)
plot(
  upsampled,
  add = TRUE,
  col = c("white", "black"),
  pixel_width = 0.5, zoom = 20,
  alpha = 0.5
)

# ---- Real example ---------------------------
nifti_file <- "brain.demosubject.nii.gz"

if( ieegio_sample_data(nifti_file, test = TRUE) ) {

  orig <- read_volume(ieegio_sample_data(nifti_file))
  dim(orig)

  # resample
  downsampled <- resample_volume(orig, new_dim = c(30, 30, 30))
  dim(downsampled)

  # up-sample on coronal
  upsampled <- resample_volume(orig, new_dim = c(300, 300, 64))
  dim(upsampled)

  par(mfrow = c(2, 2), mar = c(0, 0, 2.1, 0.1))
  plot(orig, main = "Original")
  plot(downsampled, main = "Down-sampled")
  plot(upsampled, main = "Super-sampled")
  plot(
    orig,
    main = "Overlay super-sample",
    col = c("black", "white"),
    zoom = 2,
    vlim = c(0, 255)
  )
  plot(
    upsampled,
    add = TRUE,
    col = c("white", "black"),
    zoom = 2,
    alpha = 0.5,
    vlim = c(0, 255)
  )


}

Class definition for signal cache

Description

This class is an internal abstract class

Methods

Public methods


Method get_header()

Get header information, often small list object

Usage
SignalDataCache$get_header(...)
Arguments
...

passed to child methods


Method get_annotations()

Get annotation information, often a large table

Usage
SignalDataCache$get_annotations(...)
Arguments
...

passed to child methods


Method get_channel_table()

Get channel table

Usage
SignalDataCache$get_channel_table(...)
Arguments
...

passed to child methods


Method get_channel()

Get channel data

Usage
SignalDataCache$get_channel(x, ...)
Arguments
x

channel order or label

...

passed to child methods

Returns

Channel signal with time-stamps inheriting class 'ieegio_get_channel'


Method delete()

Delete file cache

Usage
SignalDataCache$delete(...)
Arguments
...

passed to child methods