Title: | Easy to Configure an Isolated 'Python' Environment |
---|---|
Description: | Aims to create a single isolated 'Miniconda' and 'Python' environment for reproducible pipeline scripts. The package provides utilities to run system command within the 'conda' environment, making it easy to install, launch, manage, and stop 'Jupyter-lab'. |
Authors: | Zhengjia Wang [cph, aut, cre] |
Maintainer: | Zhengjia Wang <[email protected]> |
License: | Apache License (>= 2) |
Version: | 0.1.7 |
Built: | 2024-08-15 02:27:52 UTC |
Source: | https://github.com/dipterix/rpymat |
'Python'
Choose a directory, one or multiple files to open, or choose a file to save.
choose_fileopen( initialfile = NULL, multiple = FALSE, title = ifelse(multiple, "Choose Files", "Choose a File"), message = "", verbose = FALSE, force = FALSE ) choose_filesave() choose_directory( initialdir = NULL, title = "Choose a Directory", message = "", verbose = FALSE )
choose_fileopen( initialfile = NULL, multiple = FALSE, title = ifelse(multiple, "Choose Files", "Choose a File"), message = "", verbose = FALSE, force = FALSE ) choose_filesave() choose_directory( initialdir = NULL, title = "Choose a Directory", message = "", verbose = FALSE )
initialfile , initialdir
|
initial selection of file or directory |
multiple |
whether to open multiple files |
title , message
|
dialogue title and message |
verbose |
whether to verbose debug information |
force |
whether to force using |
Base-R has file.choose
function to choose files. However,
users cannot select multiple files nor directories. These functions fill
the gap by using 'Python'
'tkinter'
package. Please make
sure that one-time setup function configure_conda
has executed
before running these functions.
The functions must run as interactive mode. If you run the functions on a server, most likely you will get nothing. The functions themselves do not check if you are running under interactive sessions. You must check by yourself.
User-selected paths. If the users select nothing, then NULL
will be returned. For multiple file selection, multiple paths will
be returned.
if(interactive()) { choose_fileopen(multiple = TRUE) }
if(interactive()) { choose_fileopen(multiple = TRUE) }
These functions/variables are used to configure 'Miniconda' environment.
CONDAENV_NAME(env_name) conda_path() conda_bin() env_path() list_pkgs(...) configure_matlab(matlab, python_ver = "auto") configure_conda( python_ver = "auto", packages = NULL, matlab = NULL, update = FALSE, force = FALSE, standalone = FALSE ) remove_conda(ask = TRUE) add_packages(packages = NULL, python_ver = "auto", ...) ensure_rpymat(verbose = TRUE, cache = TRUE) matlab_engine() call_matlab( fun, ..., .options = getOption("rpymat.matlab_opt", "-nodesktop -nojvm"), .debug = getOption("rpymat.debug", FALSE) )
CONDAENV_NAME(env_name) conda_path() conda_bin() env_path() list_pkgs(...) configure_matlab(matlab, python_ver = "auto") configure_conda( python_ver = "auto", packages = NULL, matlab = NULL, update = FALSE, force = FALSE, standalone = FALSE ) remove_conda(ask = TRUE) add_packages(packages = NULL, python_ver = "auto", ...) ensure_rpymat(verbose = TRUE, cache = TRUE) matlab_engine() call_matlab( fun, ..., .options = getOption("rpymat.matlab_opt", "-nodesktop -nojvm"), .debug = getOption("rpymat.debug", FALSE) )
env_name |
alternative environment name to use; default is
|
... |
for |
matlab |
'Matlab' path to add to the configuration path; see 'Details' |
python_ver |
|
packages |
additional |
update |
whether to update |
force |
whether to force install the 'Miniconda' even a previous
version exists; default is false. Setting |
standalone |
whether to install |
ask |
whether to ask for user's agreement to remove the repository.
This parameter should be true if your functions depend on
|
verbose |
whether to print messages |
cache |
whether to use cached configurations; default is true |
fun |
'Matlab' function name, character (experimental) |
.options |
'Matlab' compiler options |
.debug |
whether to enable debug mode |
None
Package reticulate
provides sophisticated tool-sets that
allow us to call python
functions within R
. However, the
installation of 'Miniconda' and python
can be tricky on many
platforms, for example, the 'M1' chip, or some other 'ARM' machines.
The package rpymat
provides easier approach to configure on these
machines with totally isolated environments. Any modifications to this
environment will not affect your other set ups.
Since 2014, 'Matlab' has introduced its official compiler for python
.
The package rpymat
provides a simple approach to link the
compiler, provided that you have proper versions of 'Matlab' installed.
Here is a list of
'Matlab' versions with official compilers and their corresponding
python
versions.
If 'Matlab' compiler is not to be installed, In most of the cases,
function configure_conda
with default arguments automatically
downloads the latest 'Miniconda' and configures the latest python
.
If any other versions of 'Miniconda' is ought to be installed,
please set options "reticulate.miniconda.url"
to change the
source location.
If 'Matlab' is to be installed, please specify the 'Matlab' path when
running configure_conda
. If the environment has been setup,
configure_matlab
can link the 'Matlab' compilers without
removing the existing environment. For 'ARM' users, unfortunately,
there will be no 'Matlab' support as the compilers are written for
the 'Intel' chips.
Once conda
and python
environment has been installed, make sure
you run ensure_rpymat()
before running any python
code. This
function will make sure correct compiler is linked to your current
R
session.
# The script will interactively install \code{conda} to `R_user_dir` ## Not run: # Install conda and python 3.9 configure_conda(python_ver = '3.9') # Add packages h5py, pandas, jupyter add_packages(c('h5py', 'pandas', 'jupyter')) # Add pip packages add_packages("itk", pip = TRUE) # Initialize the isolated environment ensure_rpymat() # Remove the environment remove_conda() ## End(Not run)
# The script will interactively install \code{conda} to `R_user_dir` ## Not run: # Install conda and python 3.9 configure_conda(python_ver = '3.9') # Add packages h5py, pandas, jupyter add_packages(c('h5py', 'pandas', 'jupyter')) # Add pip packages add_packages("itk", pip = TRUE) # Initialize the isolated environment ensure_rpymat() # Remove the environment remove_conda() ## End(Not run)
Install, register, launch 'Jupyter' notebook to the virtual environment
add_jupyter(..., register_R = TRUE) jupyter_bin() jupyter_register_R( user = NULL, name = "ir", displayname = "R", rprofile = NULL, prefix = NULL, sys_prefix = NULL, verbose = getOption("verbose") ) jupyter_options( root_dir, host = "127.0.0.1", port = 8888, open_browser = FALSE, token = rand_string(), base_url = "/jupyter/" ) jupyter_launch( host = "127.0.0.1", port = 8888, open_browser = TRUE, workdir = getwd(), async = FALSE, ..., dry_run = FALSE ) jupyter_check_launch( port = 8888, host = "127.0.0.1", open_browser = TRUE, workdir = getwd(), async = "auto", ... ) jupyter_server_list() jupyter_server_stop(port, ...) jupyter_server_stop_all(...)
add_jupyter(..., register_R = TRUE) jupyter_bin() jupyter_register_R( user = NULL, name = "ir", displayname = "R", rprofile = NULL, prefix = NULL, sys_prefix = NULL, verbose = getOption("verbose") ) jupyter_options( root_dir, host = "127.0.0.1", port = 8888, open_browser = FALSE, token = rand_string(), base_url = "/jupyter/" ) jupyter_launch( host = "127.0.0.1", port = 8888, open_browser = TRUE, workdir = getwd(), async = FALSE, ..., dry_run = FALSE ) jupyter_check_launch( port = 8888, host = "127.0.0.1", open_browser = TRUE, workdir = getwd(), async = "auto", ... ) jupyter_server_list() jupyter_server_stop(port, ...) jupyter_server_stop_all(...)
... |
for |
register_R |
whether to register |
user , name , displayname , rprofile , prefix , sys_prefix , verbose
|
see |
root_dir , workdir
|
default root directory of the notebook |
host , port
|
'IP' and port of the hosting 'URL' |
open_browser |
whether to open the browser once launched |
token |
access token of the notebook |
base_url |
base address, default is |
async |
whether to open the notebook in the background |
dry_run |
whether to display the command instead of executing them; used to debug the code |
jupyter_bin
returns the 'Jupyter' notebook binary path;
jupyter_options
returns the 'Jupyter' configuration in strings;
jupyter_server_list
returns a table of existing local 'Jupyter'
server hosts, ports, and tokens; jupyter_check_launch
returns true
if a new server has been created, or false if there has been an existing
server at the port;
other functions return nothing.
## Not run: # Requires installation of conda library(rpymat) # Install conda, if you have done so, skip configure_conda() # Install Jupyter notebook add_jupyter(register_R = TRUE) # Utility functions jupyter_bin() # Please install `dipsaus` package to enable `async=TRUE` with # better experience jupyter_launch(async = FALSE, open_browser = TRUE) ## End(Not run)
## Not run: # Requires installation of conda library(rpymat) # Install conda, if you have done so, skip configure_conda() # Install Jupyter notebook add_jupyter(register_R = TRUE) # Utility functions jupyter_bin() # Please install `dipsaus` package to enable `async=TRUE` with # better experience jupyter_launch(async = FALSE, open_browser = TRUE) ## End(Not run)
Get 'Python' built-in object
py_builtin(name, convert = FALSE)
py_builtin(name, convert = FALSE)
name |
object name |
convert |
see |
A python built-in object specified by name
if(interactive() && dir.exists(env_path())) { # ------ Basic case: use python `int` as an R function --------- py_int <- py_builtin("int", convert = TRUE) # a is an R object now a <- py_int(9) print(a) class(a) # ------ Use python `int` as a Python function ----------------- py_int2 <- py_builtin("int", convert = FALSE) # b in a python object b <- py_int2(9) # There is no '[1] ' when printing print(b) class(b) # convert to R object py_to_r(b) }
if(interactive() && dir.exists(env_path())) { # ------ Basic case: use python `int` as an R function --------- py_int <- py_builtin("int", convert = TRUE) # a is an R object now a <- py_int(9) print(a) class(a) # ------ Use python `int` as a Python function ----------------- py_int2 <- py_builtin("int", convert = FALSE) # b in a python object b <- py_int2(9) # There is no '[1] ' when printing print(b) class(b) # convert to R object py_to_r(b) }
List in 'Python'
py_list(..., convert = FALSE)
py_list(..., convert = FALSE)
... |
passing to |
convert |
whether to convert the results back into R; default is no |
List instance, or an R vector if converted
if(interactive() && dir.exists(env_path())) { py_list(list(1,2,3)) py_list(c(1,2,3)) py_list(array(1:9, c(3,3))) py_list(list(list(1:3), letters[1:3])) }
if(interactive() && dir.exists(env_path())) { py_list(list(1,2,3)) py_list(c(1,2,3)) py_list(array(1:9, c(3,3))) py_list(list(list(1:3), letters[1:3])) }
Slice index in 'Python' arrays
py_slice(...)
py_slice(...)
... |
passing to |
Index slice instance
if(interactive() && dir.exists(env_path())) { x <- np_array(array(seq(20), c(4, 5))) # equivalent to x[::2] x[py_slice(NULL, NULL, 2L)] }
if(interactive() && dir.exists(env_path())) { x <- np_array(array(seq(20), c(4, 5))) # equivalent to x[::2] x[py_slice(NULL, NULL, 2L)] }
'xlsx'
fileTries to use 'readxl'
package or 'pandas'
to read data frame.
read_xlsx( path, sheet = NULL, method = c("auto", "pandas", "readxl"), n_max = Inf, ... )
read_xlsx( path, sheet = NULL, method = c("auto", "pandas", "readxl"), n_max = Inf, ... )
path |
|
sheet |
either a character or an integer of which spread-sheet to read;
the number starts from |
method |
which method to use for reading the |
n_max |
maximum number of rows (excluding headers) to read |
... |
passed to 'Python' function |
A data.frame
table
## Not run: rpymat::read_xlsx("Book1.xlsx", sheet = 1) rpymat::read_xlsx("Book1.xlsx", sheet = "sheet1") ## End(Not run)
## Not run: rpymat::read_xlsx("Book1.xlsx", sheet = 1) rpymat::read_xlsx("Book1.xlsx", sheet = "sheet1") ## End(Not run)
Allows users to type 'python' command from R console for quick code evaluation or debugging.
repl_python(...)
repl_python(...)
... |
passed to |
See repl_python
'reticulate'
packageAlmost the same with 'reticulate'
functions, with
rpymat
enabled by default and some minor changes
(see parameter convert
and local
)
import_main(convert = FALSE) tuple(..., convert = FALSE) py_tuple(..., convert = FALSE) py_help(object) np_array(data, ...) import(module, as = NULL, convert = FALSE, delay_load = FALSE) r_to_py(x, convert = FALSE) py_to_r(x) py_to_r_wrapper(x) py_str(object, ...) py_run_string(code, local = TRUE, convert = FALSE) py_bool(x) py_dict(keys, values, convert = FALSE) py_call(x, ...) py_del_attr(x, name) py_del_item(x, name) py_eval(code, convert = FALSE) py_get_attr(x, name, silent = FALSE) py_set_attr(x, name, value) py_get_item(x, key, silent = FALSE) py_set_item(x, name, value) py_len(x, default = NULL) py_none()
import_main(convert = FALSE) tuple(..., convert = FALSE) py_tuple(..., convert = FALSE) py_help(object) np_array(data, ...) import(module, as = NULL, convert = FALSE, delay_load = FALSE) r_to_py(x, convert = FALSE) py_to_r(x) py_to_r_wrapper(x) py_str(object, ...) py_run_string(code, local = TRUE, convert = FALSE) py_bool(x) py_dict(keys, values, convert = FALSE) py_call(x, ...) py_del_attr(x, name) py_del_item(x, name) py_eval(code, convert = FALSE) py_get_attr(x, name, silent = FALSE) py_set_attr(x, name, value) py_get_item(x, key, silent = FALSE) py_set_item(x, name, value) py_len(x, default = NULL) py_none()
convert |
whether to convert |
object , data , x , code , keys , values , ...
|
passed to corresponding
|
module , as , delay_load
|
import |
local |
whether to execute code locally so the memory sets free when the function ends; default is true |
name , silent , key , value , default
|
other parameters passing to the
|
'Python'
built-in objects
library(rpymat) if(interactive() && dir.exists(env_path())) { # tuple x <- tuple(1, 2, "a") print(x) # convert to R object py_to_r(x) # convert R object to python y <- r_to_py(list(a = 1, b = "s")) # get element py_get_item(y, "a") # get missing element py_get_item(y, "c", silent = TRUE) }
library(rpymat) if(interactive() && dir.exists(env_path())) { # tuple x <- tuple(1, 2, "a") print(x) # convert to R object py_to_r(x) # convert R object to python y <- r_to_py(list(a = 1, b = "s")) # get element py_get_item(y, "a") # get missing element py_get_item(y, "c", silent = TRUE) }
py
automatically converts 'Python' objects to R objects.
import_main
does not convert by default; see 'Examples' for details.
py
py
An object of class NULL
of length 0.
The 'Python' main process as a module
if(interactive() && dir.exists(env_path())) { py_no_convert <- rpymat::import_main(convert = FALSE) py$a <- matrix(seq_len(16), 4) py_no_convert$a py$a }
if(interactive() && dir.exists(env_path())) { py_no_convert <- rpymat::import_main(convert = FALSE) py$a <- matrix(seq_len(16), 4) py_no_convert$a py$a }
Enables 'conda' environment
cmd_create(command, shell, use_glue = TRUE) cmd_set_env(command, key, value, quote = TRUE, quote_type = "cmd") cmd_set_workdir(command, workdir) cmd_set_conda(command, conda_path, env_path) cmd_build(command, .env = parent.frame(), ...) detect_shell(suggest = NULL) run_command( command, shell = detect_shell(), use_glue = FALSE, enable_conda = TRUE, stdout = "", stderr = "", stdin = "", input = NULL, env_list = list(), wait = TRUE, timeout = 0, ..., workdir = getwd(), dry_run = FALSE, print_cmd = dry_run, glue_env = parent.frame() )
cmd_create(command, shell, use_glue = TRUE) cmd_set_env(command, key, value, quote = TRUE, quote_type = "cmd") cmd_set_workdir(command, workdir) cmd_set_conda(command, conda_path, env_path) cmd_build(command, .env = parent.frame(), ...) detect_shell(suggest = NULL) run_command( command, shell = detect_shell(), use_glue = FALSE, enable_conda = TRUE, stdout = "", stderr = "", stdin = "", input = NULL, env_list = list(), wait = TRUE, timeout = 0, ..., workdir = getwd(), dry_run = FALSE, print_cmd = dry_run, glue_env = parent.frame() )
command |
system command |
shell |
shell type |
use_glue |
whether to |
key , value
|
environment variable key and value |
quote , quote_type
|
whether to quote the environment variables and
what quote type should use; see |
workdir |
the working directory |
conda_path |
'conda' path; default is |
env_path |
'conda' environment path; default is |
suggest |
suggested shell type; default is |
enable_conda |
whether to activate 'conda' |
stdout , stderr , stdin , input , wait , timeout , ...
|
passed to
|
env_list |
a key-value pairs of environment variables |
dry_run |
whether to dry-run the command (do not execute, simply returns the command), useful to debug |
print_cmd |
whether to print the command out |
glue_env , .env
|
the environment to evaluate variables when |
All the functions return a list with class
rpymat_system_command
except for
run_command
, which returns the exit code by system2
.
run_command("conda install -y numpy", dry_run = TRUE) a <- "This is a message" run_command('echo "{a}"', dry_run = TRUE, enable_conda = FALSE, use_glue = TRUE) ## Not run: # Use `jupyter_launch()` instead. This is just a demonstration run_command('"{jupyter_bin()}" server list', use_glue = TRUE) ## End(Not run)
run_command("conda install -y numpy", dry_run = TRUE) a <- "This is a message" run_command('echo "{a}"', dry_run = TRUE, enable_conda = FALSE, use_glue = TRUE) ## Not run: # Use `jupyter_launch()` instead. This is just a demonstration run_command('"{jupyter_bin()}" server list', use_glue = TRUE) ## End(Not run)
A wrapper of py_run_file
,
but with rpymat
enabled
run_script( x, work_dir = NULL, local = FALSE, convert = FALSE, globals = list() ) run_pyscript( x, work_dir = NULL, local = FALSE, convert = FALSE, globals = list() ) run_pystring( code, work_dir = NULL, local = FALSE, convert = FALSE, globals = list() )
run_script( x, work_dir = NULL, local = FALSE, convert = FALSE, globals = list() ) run_pyscript( x, work_dir = NULL, local = FALSE, convert = FALSE, globals = list() ) run_pystring( code, work_dir = NULL, local = FALSE, convert = FALSE, globals = list() )
x |
'Python' script path |
work_dir |
working directory of the script |
local , convert
|
passed to |
globals |
named list of global R variables used by 'Python' script |
code |
'Python' code |
The values returned by py_run_file
## Not run: # Please configure conda environment first x <- tempfile() writeLines(c( "import re", "zipcode = re.findall(r'[0-9]{5,6}', r.address)" ), con = x) address <- '2341 Main St., 72381' rpymat::run_script(x) py$zipcode ## End(Not run)
## Not run: # Please configure conda environment first x <- tempfile() writeLines(c( "import re", "zipcode = re.findall(r'[0-9]{5,6}', r.address)" ), con = x) address <- '2341 Main St., 72381' rpymat::run_script(x) py$zipcode ## End(Not run)