Package 'rpyANTs'

Title: An Alternative Advanced Normalization Tools ('ANTs')
Description: Provides portable access from 'R' to biomedical image processing toolbox 'ANTs' by Avants et al. (2009) <doi:10.54294/uvnhin> via seamless integration with the 'Python' implementation 'ANTsPy'. Allows biomedical images to be processed in 'Python' and analyzed in 'R', and vice versa via shared memory. See 'citation("rpyANTs")' for more reference information.
Authors: Zhengjia Wang [aut, cre]
Maintainer: Zhengjia Wang <[email protected]>
License: Apache License 2.0
Version: 0.0.4.2
Built: 2024-12-19 19:20:25 UTC
Source: https://github.com/dipterix/rpyANTs

Help Index


Get 'ANTsPy' module

Description

Get 'ANTsPy' module

Usage

ants

load_ants(force = FALSE, error_if_missing = TRUE)

Arguments

force

whether to force reloading ants module; default is false

error_if_missing

whether to raise errors when the module is unable to load; default is true.

Value

A 'Python' module if successfully loaded. If error_if_missing is set to false and module is unable to load, return NULL

See Also

antspynet


Apply a transform list to map an image from one domain to another

Description

See ants$apply_transforms for more details.

Usage

ants_apply_transforms(
  fixed,
  moving,
  transformlist,
  interpolator = c("linear", "nearestNeighbor", "gaussian", "genericLabel", "bSpline",
    "cosineWindowedSinc", "welchWindowedSinc", "hammingWindowedSinc",
    "lanczosWindowedSinc"),
  imagetype = 0L,
  whichtoinvert = NULL,
  compose = NULL,
  defaultvalue = 0,
  verbose = FALSE,
  ...
)

Arguments

fixed

fixed image defining domain into which the moving image is transformed

moving

moving image to be mapped to fixed space

transformlist

list of strings (path to transforms) generated by ants_registration where each transform is a file name

interpolator

how to interpolate the image; see 'Usage'

imagetype

integer: 0 (scalar), 1 (vector), 2 (tensor), 3 (time-series), used when the fixed and moving images have different mode (dimensions)

whichtoinvert

either NULL, None ('Python'), or a vector of logical with same length as transformlist; print ants$apply_transforms to see detailed descriptions

compose

optional character pointing to a valid file location

defaultvalue

numerical value for mappings outside the image domain

verbose

whether to verbose application of transform

...

must be named arguments passing to further methods

Value

Transformed image. The image will share the same space as fixed.

See Also

print(ants$apply_transforms)

Examples

if(interactive() && ants_available()) {
  ants <- load_ants()
  fixed <- as_ANTsImage( ants$get_ants_data('r16') )
  moving <- as_ANTsImage( ants$get_ants_data('r64') )
  fixed <- ants_resample_image(fixed, c(64, 64), TRUE, "linear")
  moving <- ants_resample_image(moving, c(64,64), TRUE, "linear")

  mytx <- ants_registration(fixed = fixed,
                            moving = moving,
                            type_of_transform = 'SyN')
  mywarpedimage <- ants_apply_transforms(
    fixed = fixed,
    moving = moving,
    transformlist = mytx$fwdtransforms
  )

  par(mfrow = c(1,3), mar = c(0,0,3,0))
  pal <- gray.colors(256)
  image(fixed[], asp = 1, axes = FALSE, col = pal,
        ylim = c(1, 0), main = "Reference")
  image(moving[], asp = 1, axes = FALSE, col = pal,
        ylim = c(1, 0), main = "Moving")
  image(mywarpedimage[], asp = 1, axes = FALSE, col = pal,
        ylim = c(1, 0), main = "Moving reg+resamp into Reference")
}

Apply a transform list to map points from one domain to another

Description

See ants$apply_transforms_to_points for more details. Please note point mapping goes the opposite direction of image mapping (see ants_apply_transforms), for both reasons of convention and engineering.

Usage

ants_apply_transforms_to_points(
  dim,
  points,
  transformlist,
  whichtoinvert = NULL,
  verbose = FALSE,
  ...
)

Arguments

dim

dimensions of the transformation

points

data frame containing columns 'x', 'y', 'z', 't' (depending on dim)

transformlist

list of strings (path to transforms) generated by ants_registration where each transform is a file name

whichtoinvert

either NULL, None ('Python'), or a vector of logical with same length as transformlist; print ants$apply_transforms_to_points to see detailed descriptions

verbose

whether to verbose application of transform

...

ignored

Value

Transformed points in data frame (R object)

See Also

print(ants$apply_transforms_to_points)

Examples

if(interactive() && ants_available()) {
  ants <- load_ants()
  fixed <- as_ANTsImage( ants$get_ants_data('r16') )
  moving <- as_ANTsImage( ants$get_ants_data('r27') )

  reg <- ants_registration(
    fixed = fixed, moving = moving,
    type_of_transform = "antsRegistrationSyNRepro[a]")

  pts <- data.frame(
    x = c(128, 127),
    y = c(101, 111)
  )

  ptsw = ants_apply_transforms_to_points(2, pts, reg$fwdtransforms)
  ptsw
}

Check if 'ANTs' is available

Description

Check if 'ANTs' is available

Usage

ants_available(module = c("ants", "antspynet"))

Arguments

module

either 'ants' or 'antspynet'; default is 'ants'

Value

Logical, whether 'ANTs' or 'ANTsPyNet' is available

See Also

install_ants


Motion correction

Description

Print ants$motion_correction to see the original document

Usage

ants_motion_correction(
  x,
  fixed = NULL,
  type_of_transform = "BOLDRigid",
  mask = NULL,
  fdOffset = 50,
  outprefix = "",
  verbose = FALSE,
  ...
)

Arguments

x

input image, usually 'fMRI' series

fixed

fixed image to register all timepoints to

type_of_transform

see ants_registration

mask

mask for image

fdOffset

offset value to use in frame-wise displacement calculation

outprefix

save path

verbose

whether to verbose the messages

...

passed to registration methods

Value

Motion-corrected image

Examples

if(interactive() && ants_available()) {
  fi <- as_ANTsImage(ants$get_ants_data('ch2'))
  mytx <- ants_motion_correction( fi )

  par(mfrow = c(1, 2), mar = c(1,1,1,1))
  image(fi[,,91], asp = 1, axes = FALSE)
  image(mytx$motion_corrected[,,91], asp = 1, axes = FALSE)
}

Plot single 'ANTsImage'

Description

Plot single 'ANTsImage'

Usage

ants_plot(
  image,
  overlay = NULL,
  blend = FALSE,
  alpha = 1,
  cmap = "Greys_r",
  overlay_cmap = "turbo",
  overlay_alpha = 0.9,
  vminol = NULL,
  vmaxol = NULL,
  cbar = FALSE,
  cbar_length = 0.8,
  cbar_dx = 0,
  cbar_vertical = TRUE,
  axis = 0,
  nslices = 12,
  slices = NULL,
  ncol = NULL,
  slice_buffer = NULL,
  black_bg = TRUE,
  bg_thresh_quant = 0.01,
  bg_val_quant = 0.99,
  domain_image_map = NULL,
  crop = FALSE,
  scale = FALSE,
  reverse = FALSE,
  title = "",
  title_fontsize = 20,
  title_dx = 0,
  title_dy = 0,
  filename = NULL,
  dpi = 500,
  figsize = 1.5,
  reorient = TRUE,
  resample = TRUE,
  force_agg = FALSE,
  close_figure = TRUE
)

Arguments

image

'ANTsImage', or something can be converted to 'ANTsImage'

overlay

overlay 'ANTsImage', can be NULL, optional

blend

whether to blend image with overlay; default is false

cmap, alpha

image color map and transparency

overlay_cmap, overlay_alpha

overlay color map and transparency

vminol, vmaxol

I could not find its usage

cbar

whether to draw color legend

cbar_length, cbar_dx, cbar_vertical

legend position and size

axis

see 'Details'

nslices, slices, ncol

controls slice to show

slice_buffer

performance

black_bg, bg_thresh_quant, bg_val_quant

controls background

domain_image_map

optional 'ANTsImage'

crop, scale, reverse

whether to crop, scale, or reverse the image according to background

title, title_fontsize, title_dx, title_dy

image title

filename, dpi, figsize

needed when saving to file

reorient

whether to reorient to 'LAI' before plotting; default is true

resample

whether to resample

force_agg

whether to force graphic engine to use 'agg' device; default is false

close_figure

whether to close figure when returning the function

Details

By default, images will be reoriented to 'LAI' orientation before plotting. So, if axis=0, the images will be ordered from the left side of the brain to the right side of the brain. If axis=1, the images will be ordered from the anterior (front) of the brain to the posterior (back) of the brain. And if axis=2, the images will be ordered from the inferior (bottom) of the brain to the superior (top) of the brain.

Value

Nothing

Examples

if(interactive() && ants_available()) {
  ants <- load_ants()
  img <- ants$image_read(ants$get_ants_data('mni'))

  ants_plot(
    img, nslices = 12, black_bg = FALSE,
    bg_thresh_quant = 0.05, bg_val_quant = 1.0, axis = 2,
    cbar = TRUE, crop = TRUE, reverse = TRUE, cbar_vertical = FALSE,
    ncol = 4, title = "Axial view of MNI brain"
  )
}

Plot multiple 'ANTsImage'

Description

R-friendly wrapper function for ants$plot_grid

Usage

ants_plot_grid(
  images,
  shape = NULL,
  slices = 0,
  axes = 2,
  figsize = 1,
  rpad = 0,
  cpad = 0,
  vmin = NULL,
  vmax = NULL,
  colorbar = TRUE,
  cmap = "Greys_r",
  title = "",
  tfontsize = 20,
  title_dx = 0,
  title_dy = 0,
  rlabels = NULL,
  rfontsize = 14,
  rfontcolor = "black",
  rfacecolor = "white",
  clabels = NULL,
  cfontsize = 14,
  cfontcolor = "black",
  cfacecolor = "white",
  filename = NULL,
  dpi = 400,
  transparent = TRUE,
  ...,
  force_agg = FALSE,
  close_figure = TRUE
)

Arguments

images

a single 'ANTsImage', list, or nested list of 'ANTsImage'

shape

shape of grid, default is using dimensions of images

slices

length of one or equaling to length of slices, slice number to plot

axes

0 for 'sagittal', 1 for 'coronal', 2 for 'axial'; default is 2

figsize, rpad, cpad, colorbar, cmap, transparent

graphical parameters

vmin, vmax

value threshold for the image

title

title of figure

title_dx, title_dy, tfontsize

controls title margin and size

rlabels, clabels

row and column labels

rfontsize, rfontcolor, rfacecolor, cfontsize, cfontcolor, cfacecolor

row and column font size, color, and background color

filename, dpi

parameters to save figures

...

passed to ants$plot_grid; make sure all entries are named

force_agg

whether to force graphic engine to use 'agg' device; default is false

close_figure

whether to close figure when returning the function

Value

Nothing

Examples

if(interactive() && ants_available()) {
  ants <- load_ants()
  image1 <- ants$image_read(ants$get_ants_data('mni'))
  image2 <- image1$smooth_image(1.0)
  image3 <- image1$smooth_image(2.0)
  image4 <- image1$smooth_image(3.0)

  ants_plot_grid(
    list(image1, image2, image3, image4),
    slices = 100, title = "4x1 Grid"
  )

  ants_plot_grid(
    list(image1, image2, image3, image4),
    shape = c(2, 2),
    slices = 100, title = "2x2 Grid"
  )
  ants_plot_grid(
    list(image1, image2, image3, image4),
    shape = c(2, 2), axes = c(0,1,2,1),
    slices = 100, title = "2x2 Grid (diff. anatomical slices)"
  )

}

Register two images using 'ANTs'

Description

Register two images using 'ANTs'

Usage

ants_registration(
  fixed,
  moving,
  type_of_transform = "SyN",
  initial_transform = NULL,
  outprefix = tempfile(),
  mask = NULL,
  grad_step = 0.2,
  flow_sigma = 3,
  total_sigma = 0,
  aff_metric = c("mattes", "GC", "meansquares"),
  aff_sampling = 32,
  aff_random_sampling_rate = 0.2,
  syn_metric = c("mattes", "CC", "meansquares", "demons"),
  syn_sampling = 32,
  reg_iterations = c(40, 20, 0),
  aff_iterations = c(2100, 1200, 1200, 10),
  aff_shrink_factors = c(6, 4, 2, 1),
  aff_smoothing_sigmas = c(3, 2, 1, 0),
  write_composite_transform = FALSE,
  verbose = FALSE,
  smoothing_in_mm = FALSE,
  ...
)

Arguments

fixed

fixed image to which we register the moving image, can be character path to 'NIfTI' image, or 'ANTsImage' instance, 'oro.nifti' object, 'niftiImage' from package 'RNifti', or 'threeBrain.nii' from package 'threeBrain'; see also as_ANTsImage

moving

moving image to be mapped to fixed space; see also as_ANTsImage

type_of_transform

a linear or non-linear registration type; print ants$registration to see details

initial_transform

optional list of strings; transforms to apply prior to registration

outprefix

output file to save results

mask

image mask; see also as_ANTsImage

grad_step, flow_sigma, total_sigma

optimization parameters

aff_metric

the metric for the 'affine' transformation, choices are 'GC', 'mattes', 'meansquares'

aff_sampling, aff_random_sampling_rate, aff_iterations, aff_shrink_factors, aff_smoothing_sigmas

controls 'affine' transform

syn_metric

the metric for the 'SyN' transformation, choices are 'GC', 'mattes', 'meansquares', 'demons'

syn_sampling, reg_iterations

controls the 'SyN' transform

write_composite_transform

whether the composite transform (and its inverse, if it exists) should be written to an 'HDF5' composite file; default is false

verbose

verbose the progress

smoothing_in_mm

logical, currently only impacts low dimensional registration

...

others passed to ants$registration

Details

Function family ants_registration* align images (specified by moving) to fixed. Here are descriptions of the variations:

ants_registration

Simple wrapper function for 'Python' implementation ants.registration, providing various of registration options

ants_registration_halpern1

Rigid-body registration designed for 'Casey-Halpern' lab, mainly used for aligning 'MRI' to 'CT' (or the other way around)

Value

A 'Python' dictionary of aligned images and transform files.

Examples

if(interactive() && ants_available()) {

  ants <- load_ants()

  # check the python documentation here for detailed explanation
  print(ants$registration)

  # example to register
  fi <- ants$image_read(ants$get_ants_data('r16'))
  mo <- ants$image_read(ants$get_ants_data('r64'))

  # resample to speed up this example
  fi <- ants$resample_image(fi, list(60L,60L), TRUE, 0L)
  mo <- ants$resample_image(mo, list(60L,60L), TRUE, 0L)

  # SDR transform
  transform <- ants_registration(
    fixed=fi, moving=mo, type_of_transform = 'SyN' )

  ants$plot(fi, overlay = transform$warpedmovout, overlay_alpha = 0.3)


}

Resample image

Description

See ants$resample_image for more details

Usage

ants_resample_image(
  x,
  resample_params,
  use_voxels = FALSE,
  interp_type = c("linear", "nn", "guassian", "sinc", "bspline")
)

Arguments

x

input image

resample_params

either relative number or absolute integers

use_voxels

whether the resample_params should be treated as new dimension use_voxels=TRUE, or the new dimension should be calculated based on current dimension and resample_params combined (use_voxels=FALSE then resample_params will be treated as relative number); default is FALSE

interp_type

interpolation type; either integer or character; see 'Usage' for available options

Value

Resampled image

Examples

if(interactive() && ants_available()) {
  ants <- load_ants()
  fi <- as_ANTsImage(ants$get_ants_data("r16"))

  # linear (interp_type = 0 or "linear)
  filin <- ants_resample_image(fi, c(50, 60), TRUE, "linear")

  # nearest neighbor (interp_type = 1 or "nn)
  finn <- ants_resample_image(fi, c(50, 60), TRUE, "nn")

  par(mfrow = c(1, 3), mar = c(0, 0, 0, 0))
  pal <- gray.colors(256, start = 0)

  image(fi[], asp = 1, axes = FALSE,
        ylim = c(1,0), col = pal)
  image(filin[], asp = 1, axes = FALSE,
        ylim = c(1,0), col = pal)
  image(finn[], asp = 1, axes = FALSE,
        ylim = c(1,0), col = pal)
}

Get 'ANTsPyNet' module

Description

Get 'ANTsPyNet' module

Usage

load_antspynet(force = FALSE, error_if_missing = TRUE)

Arguments

force

whether to force reloading antspynet module; default is false

error_if_missing

whether to raise errors when the module is unable to load; default is true.

Value

A 'Python' module if successfully loaded. If error_if_missing is set to false and module is unable to load, return NULL

See Also

ants


Extract brain and strip skull

Description

Print antspynet$brain_extraction to see the original documentation.

Usage

antspynet_brain_extraction(
  x,
  modality = c("t1", "t1nobrainer", "t1combined", "flair", "t2", "t2star", "bold", "fa",
    "t1t2infant", "t1infant", "t2infant"),
  verbose = FALSE
)

Arguments

x

input image or image path

modality

modality type

verbose

whether to print out process to the screen

Value

Brain mask image


Process brain image prior to segmentation

Description

Strip skulls, normalize intensity, align and re-sample to template. This procedure is needed for many antspynet functions since the deep neural networks are trained in template spaces

Usage

antspynet_preprocess_brain_image(
  x,
  truncate_intensity = c(0.01, 0.99),
  brain_extraction_modality = c("none", "t1", "t1v0", "t1nobrainer", "t1combined",
    "flair", "t2", "bold", "fa", "t1infant", "t2infant"),
  template_transform_type = c("None", "Affine", "Rigid"),
  template = c("biobank", "croppedMni152"),
  do_bias_correction = TRUE,
  return_bias_field = FALSE,
  do_denoising = TRUE,
  intensity_matching_type = c("regression", "histogram"),
  reference_image = NULL,
  intensity_normalization_type = NULL,
  verbose = TRUE
)

Arguments

x

'ANTsImage' or path to image to process

truncate_intensity

defines the quantile threshold for truncating the image intensity

brain_extraction_modality

character of length 1, perform brain extraction modality

template_transform_type

either 'Rigid' or 'Affine' align to template brain

template

template image (not skull-stripped) or string, e.g. 'biobank', 'croppedMni152'

do_bias_correction

whether to perform bias field correction

return_bias_field

return bias field as an additional output without bias correcting the image

do_denoising

whether to remove noises using non-local means

intensity_matching_type

either 'regression' or 'histogram'; only is performed if reference_image is not NULL.

reference_image

'ANTsImage' or path to image, or NULL

intensity_normalization_type

either re-scale the intensities to c(0, 1) ('01'), or for zero-mean, unit variance ('0mean'); if NULL normalization is not performed

verbose

print progress to the screen

Value

Dictionary with images after process. The images are registered and re-sampled into template.

See Also

antspynet$preprocess_brain_image

Examples

library(rpyANTs)
if(interactive() && ants_available("antspynet")) {
  image_path <- ants$get_ants_data('r30')
  preprocessed <- antspynet_preprocess_brain_image(
    image_path, verbose = FALSE
  )

  # Compare
  orig_img <- as_ANTsImage(image_path)
  new_img <- preprocessed$preprocessed_image
  pal <- grDevices::gray.colors(256, start = 0, end = 1)

  par(mfrow = c(1, 2), mar = c(0.1, 0.1, 0.1, 0.1),
      bg = "black", fg = "white")
  image(orig_img[], asp = 1, axes = FALSE,
        col = pal, ylim = c(1, 0))
  image(new_img[], asp = 1, axes = FALSE,
        col = pal, ylim = c(1, 0))

}

Imaging segmentation using antspynet

Description

Supports Desikan-Killiany-Tourville labeling and deep 'Atropos'.

Usage

antspynet_desikan_killiany_tourville_labeling(
  x,
  do_preprocessing = TRUE,
  return_probability_images = FALSE,
  do_lobar_parcellation = FALSE,
  verbose = TRUE
)

antspynet_deep_atropos(
  x,
  do_preprocessing = TRUE,
  use_spatial_priors = TRUE,
  aseg_only = TRUE,
  verbose = TRUE
)

Arguments

x

'NIfTI' image or path to the image that is to be segmented

do_preprocessing

whether x is in native space and needs the be registered to template brain before performing segmentation; default is true since the model is trained with template brain. If you want to manually process the image, see antspynet_preprocess_brain_image

return_probability_images

whether to return probability images

do_lobar_parcellation

whether to perform lobar 'parcellation'

verbose

whether to print out the messages

use_spatial_priors

whether to use 'MNI' partial tissue priors

aseg_only

whether to just return the segmented image

Value

One or a list of 'ANTsImage' image instances. Please print out antspynet$desikan_killiany_tourville_labeling or antspynet$deep_atropos to see the details.

See Also

antspynet$desikan_killiany_tourville_labeling, antspynet$deep_atropos

Examples

# Print Python documents
if(interactive() && ants_available("antspynet")) {
  antspynet <- load_antspynet()

  print(antspynet$deep_atropos)

  print(antspynet$desikan_killiany_tourville_labeling)
}

Load data as 'ANTsImage' class

Description

Load data as 'ANTsImage' class

Usage

as_ANTsImage(x, strict = FALSE)

Arguments

x

data to be converted; this can be an 'ANTsImage' instance, character, 'oro.nifti' object, 'niftiImage' from package 'RNifti', or 'threeBrain.nii' from package 'threeBrain'

strict

whether x should not be NULL

Value

An 'ANTsImage' instance; use ants$ANTsImage to see the 'Python' documentation

Examples

if(interactive() && ants_available()) {

  ants <- load_ants()

  # Python string
  x1 <- ants$get_ants_data('r16')
  as_ANTsImage( x1 )

  # R character
  nii_path <- system.file(package = "RNifti",
                          "extdata", "example.nii.gz")
  as_ANTsImage( nii_path )

  # niftiImage object
  x2 <- RNifti::readNifti(nii_path)
  as_ANTsImage( x2 )

}

Convert to 'ANTsTransform'

Description

Convert to 'ANTsTransform'

Usage

as_ANTsTransform(x, ...)

## Default S3 method:
as_ANTsTransform(x, dimension = 3, ...)

## S3 method for class 'ants.core.ants_transform.ANTsTransform'
as_ANTsTransform(x, ...)

## S3 method for class 'ants.core.ants_image.ANTsImage'
as_ANTsTransform(x, ...)

## S3 method for class 'numpy.ndarray'
as_ANTsTransform(x, ...)

## S3 method for class 'character'
as_ANTsTransform(x, ...)

Arguments

x

'affine' matrix or 'numpy' array, character path to the matrix, 'ANTsTransform', 'ANTsImage' as displacement field.

...

passed to other methods

dimension

expected transform space dimension; default is 3

Value

An 'ANTsTransform' object

Examples

if(interactive() && ants_available()) {

  mat <- matrix(c(
    0, -1, 0, 128,
    1, 0, 0, -128,
    0, 0, -1, 128,
    0, 0,  0,   1
  ), ncol = 4, byrow = TRUE)

  trans <- as_ANTsTransform(mat)
  trans

  # apply transform
  trans$apply_to_point(c(120, 400, 1))

  # same results
  mat %*% c(120, 400, 1, 1)

  trans[] == mat

}

Truncate and correct 'MRI' intensity

Description

Uses ants.abp_n4 to truncate and correct intensity

Usage

correct_intensity(image, mask = NULL, intensity_truncation = c(0.025, 0.975))

Arguments

image

'MRI' image to be corrected, will be passed to as_ANTsImage

mask

binary mask image

intensity_truncation

numerical length of two, quantile probabilities to truncate.

Value

An 'ANTsImage' instance

Examples

if(interactive() && ants_available()) {
  ants <- load_ants()
  scale <- (0.1 + outer(
    seq(0, 1, length.out = 256)^6,
    seq(0, 1, length.out = 256)^2,
    FUN = "+"
  )) / 6
  img = ants$image_read(ants$get_ants_data('r16')) * scale

  corrected <- correct_intensity(img)

  pal <- gray.colors(255, start = 0)
  par(mfrow = c(1, 2), mar = c(0.1, 0.1, 2.1, 0.1),
      bg = "black", fg = "white")
  image(img[], asp = 1, axes = FALSE,
        col = pal, ylim = c(1, 0),
        main = "Original", col.main = "white")
  image(corrected[], asp = 1, axes = FALSE,
        col = pal, ylim = c(1, 0),
        main = "Corrected", col.main = "white")

}

Ensure the template directory is downloaded

Description

Ensure the template directory is downloaded

Usage

ensure_template(name = BUILTIN_TEMPLATES)

Arguments

name

name of the template, commonly known as 'MNI152' templates; choices are "mni_icbm152_nlin_asym_09a", "mni_icbm152_nlin_asym_09b", and "mni_icbm152_nlin_asym_09c".

Value

The downloaded template path

Examples

# Do not run for testing as this will download the template
if(FALSE) {

# Default is `mni_icbm152_nlin_asym_09a`
ensure_template()
ensure_template("mni_icbm152_nlin_asym_09a")

# Using MNI152b
ensure_template("mni_icbm152_nlin_asym_09b")

}

'ANTs' functions for 'Halpern' lab

Description

'ANTs' functions for 'Halpern' lab

Usage

halpern_register_ct_mri(
  fixed,
  moving,
  outprefix,
  fixed_is_ct = TRUE,
  verbose = TRUE
)

halpern_register_template_mri(
  fixed,
  moving,
  outprefix,
  mask = NULL,
  verbose = TRUE
)

halpern_apply_transform_template_mri(roi_folder, outprefix, verbose = TRUE)

Arguments

fixed

fixed image as template

moving

moving image that is to be registered into fixed

outprefix

output prefix, needs to be absolute path prefix

fixed_is_ct

whether fixed is 'CT'

verbose

whether to verbose the progress; default is true

mask

mask file for template (skull-stripped)

roi_folder

template 'ROI' or atlas folder in which the image atlases or masks will be transformed into subject's native brain

Value

A list of result configurations


Install 'ANTs' via 'ANTsPy'

Description

Install 'ANTs' via 'ANTsPy'

Usage

install_ants(python_ver = "3.11", verbose = TRUE)

Arguments

python_ver

'Python' version, see configure_conda; default is "3.11" since 'ANTsPy' is compiled for all platforms under this version

verbose

whether to print the installation messages

Value

This function returns nothing.


Check if an object is a 3D 'affine' transform matrix

Description

Check if an object is a 3D 'affine' transform matrix

Usage

is_affine3D(x, ...)

## Default S3 method:
is_affine3D(x, strict = TRUE, ...)

## S3 method for class 'ants.core.ants_transform.ANTsTransform'
is_affine3D(x, ...)

Arguments

x

R or Python object, accepted forms are numeric matrix, 'ANTsTransform', or character (path to transform matrix)

...

passed to other methods

strict

whether the last element should be always 1

Value

A logical value whether the object can be loaded as a 4-by-4 matrix.

Examples

# not affine
is_affine3D(1)

# 3x3 matrix is not as it is treated as 2D transform
is_affine3D(matrix(rnorm(9), nrow = 3))

# 3x4 matrix
x <- matrix(rnorm(12), nrow = 3)
is_affine3D(x)

# 4x4 matrix
x <- rbind(x, c(0,0,0,1))
is_affine3D(x)

if(interactive() && ants_available()) {

  ants <- load_ants()
  x <- ants$new_ants_transform(dimension = 3L)
  is_affine3D(x)

  # save the parameters
  f <- tempfile(fileext = ".mat")
  ants$write_transform(x, f)
  is_affine3D(f)

}

Get 'Python' main process environment

Description

Get 'Python' main process environment

Usage

py

Format

An object of class python.builtin.module (inherits from python.builtin.object) of length 1.

Value

The 'Python' main process as a module


Get 'Python' built-in object

Description

Get 'Python' built-in object

Usage

py_builtin(name, convert = TRUE)

Arguments

name

object name

convert

see import_builtins

Value

A python built-in object specified by name

Examples

if(interactive() && ants_available()) {


# ------ Basic case: use python `int` as an R function ---------
py_int <- py_builtin("int")

# a is an R object now
a <- py_int(9)
print(a)
class(a)

# ------ Use python `int` as a Python function -----------------
py_int2 <- py_builtin("int", convert = FALSE)

# b in a python object
b <- py_int2(9)

# There is no '[1] ' when printing
print(b)
class(b)

# convert to R object
py_to_r(b)



}

List in 'Python'

Description

List in 'Python'

Usage

py_list(..., convert = FALSE)

Arguments

...

passing to list ('Python')

convert

whether to convert the results back into R; default is no

Value

List instance, or an R vector if converted

Examples

if(interactive() && ants_available()) {

  py_list(list(1,2,3))
  py_list(c(1,2,3))

  py_list(array(1:9, c(3,3)))
  py_list(list(list(1:3), letters[1:3]))

}

Slice index in 'Python' arrays

Description

Slice index in 'Python' arrays

Usage

py_slice(...)

Arguments

...

passing to slice ('Python')

Value

Index slice instance

Examples

if(interactive() && ants_available()) {

  x <- np_array(array(seq(20), c(4, 5)))

  # equivalent to x[::2]
  x[py_slice(NULL, NULL, 2L)]

}

Process 'T1' image

Description

Process 'MRI' and align with template brains

Usage

t1_preprocess(
  t1_path,
  templates = "mni_icbm152_nlin_asym_09a",
  work_path = ".",
  verbose = TRUE
)

Arguments

t1_path

path to a 'T1' image

templates

template to use; default is 'mni_icbm152_nlin_asym_09a',

work_path

working path, must be a directory

verbose

whether to verbose the progress

Value

Nothing will be returned. Please check work_path for results.