Title: | An Alternative Advanced Normalization Tools ('ANTs') |
---|---|
Description: | Provides portable access from 'R' to biomedical image processing toolbox 'ANTs' by Avants et al. (2009) <doi:10.54294/uvnhin> via seamless integration with the 'Python' implementation 'ANTsPy'. Allows biomedical images to be processed in 'Python' and analyzed in 'R', and vice versa via shared memory. See 'citation("rpyANTs")' for more reference information. |
Authors: | Zhengjia Wang [aut, cre] |
Maintainer: | Zhengjia Wang <[email protected]> |
License: | Apache License 2.0 |
Version: | 0.0.3.9005 |
Built: | 2024-08-23 05:47:57 UTC |
Source: | https://github.com/dipterix/rpyANTs |
Get 'ANTsPy' module
ants load_ants(force = FALSE, error_if_missing = TRUE)
ants load_ants(force = FALSE, error_if_missing = TRUE)
force |
whether to force reloading |
error_if_missing |
whether to raise errors when the module is unable to load; default is true. |
A 'Python' module if successfully loaded. If error_if_missing
is set to false and module is unable to load, return NULL
See ants$apply_transforms
for more details.
ants_apply_transforms( fixed, moving, transformlist, interpolator = c("linear", "nearestNeighbor", "gaussian", "genericLabel", "bSpline", "cosineWindowedSinc", "welchWindowedSinc", "hammingWindowedSinc", "lanczosWindowedSinc"), imagetype = 0L, whichtoinvert = NULL, compose = NULL, defaultvalue = 0, verbose = FALSE, ... )
ants_apply_transforms( fixed, moving, transformlist, interpolator = c("linear", "nearestNeighbor", "gaussian", "genericLabel", "bSpline", "cosineWindowedSinc", "welchWindowedSinc", "hammingWindowedSinc", "lanczosWindowedSinc"), imagetype = 0L, whichtoinvert = NULL, compose = NULL, defaultvalue = 0, verbose = FALSE, ... )
fixed |
fixed image defining domain into which the moving image is transformed |
moving |
moving image to be mapped to fixed space |
transformlist |
list of strings (path to transforms) generated by
|
interpolator |
how to interpolate the image; see 'Usage' |
imagetype |
integer: 0 (scalar), 1 (vector), 2 (tensor), 3 (time-series), used when the fixed and moving images have different mode (dimensions) |
whichtoinvert |
either |
compose |
optional character pointing to a valid file location |
defaultvalue |
numerical value for mappings outside the image domain |
verbose |
whether to verbose application of transform |
... |
must be named arguments passing to further methods |
Transformed image. The image will share the same space as fixed
.
print(ants$apply_transforms)
if(interactive() && ants_available()) { ants <- load_ants() fixed <- as_ANTsImage( ants$get_ants_data('r16') ) moving <- as_ANTsImage( ants$get_ants_data('r64') ) fixed <- ants_resample_image(fixed, c(64, 64), TRUE, "linear") moving <- ants_resample_image(moving, c(64,64), TRUE, "linear") mytx <- ants_registration(fixed = fixed, moving = moving, type_of_transform = 'SyN') mywarpedimage <- ants_apply_transforms( fixed = fixed, moving = moving, transformlist = mytx$fwdtransforms ) par(mfrow = c(1,3), mar = c(0,0,3,0)) pal <- gray.colors(256) image(fixed[], asp = 1, axes = FALSE, col = pal, ylim = c(1, 0), main = "Reference") image(moving[], asp = 1, axes = FALSE, col = pal, ylim = c(1, 0), main = "Moving") image(mywarpedimage[], asp = 1, axes = FALSE, col = pal, ylim = c(1, 0), main = "Moving reg+resamp into Reference") }
if(interactive() && ants_available()) { ants <- load_ants() fixed <- as_ANTsImage( ants$get_ants_data('r16') ) moving <- as_ANTsImage( ants$get_ants_data('r64') ) fixed <- ants_resample_image(fixed, c(64, 64), TRUE, "linear") moving <- ants_resample_image(moving, c(64,64), TRUE, "linear") mytx <- ants_registration(fixed = fixed, moving = moving, type_of_transform = 'SyN') mywarpedimage <- ants_apply_transforms( fixed = fixed, moving = moving, transformlist = mytx$fwdtransforms ) par(mfrow = c(1,3), mar = c(0,0,3,0)) pal <- gray.colors(256) image(fixed[], asp = 1, axes = FALSE, col = pal, ylim = c(1, 0), main = "Reference") image(moving[], asp = 1, axes = FALSE, col = pal, ylim = c(1, 0), main = "Moving") image(mywarpedimage[], asp = 1, axes = FALSE, col = pal, ylim = c(1, 0), main = "Moving reg+resamp into Reference") }
See ants$apply_transforms_to_points
for more details. Please note
point mapping goes the opposite direction of image mapping (see
ants_apply_transforms
), for both reasons of convention and
engineering.
ants_apply_transforms_to_points( dim, points, transformlist, whichtoinvert = NULL, verbose = FALSE, ... )
ants_apply_transforms_to_points( dim, points, transformlist, whichtoinvert = NULL, verbose = FALSE, ... )
dim |
dimensions of the transformation |
points |
data frame containing columns |
transformlist |
list of strings (path to transforms) generated by
|
whichtoinvert |
either |
verbose |
whether to verbose application of transform |
... |
ignored |
Transformed points in data frame (R object)
print(ants$apply_transforms_to_points)
if(interactive() && ants_available()) { ants <- load_ants() fixed <- as_ANTsImage( ants$get_ants_data('r16') ) moving <- as_ANTsImage( ants$get_ants_data('r27') ) reg <- ants_registration( fixed = fixed, moving = moving, type_of_transform = "antsRegistrationSyNRepro[a]") pts <- data.frame( x = c(128, 127), y = c(101, 111) ) ptsw = ants_apply_transforms_to_points(2, pts, reg$fwdtransforms) ptsw }
if(interactive() && ants_available()) { ants <- load_ants() fixed <- as_ANTsImage( ants$get_ants_data('r16') ) moving <- as_ANTsImage( ants$get_ants_data('r27') ) reg <- ants_registration( fixed = fixed, moving = moving, type_of_transform = "antsRegistrationSyNRepro[a]") pts <- data.frame( x = c(128, 127), y = c(101, 111) ) ptsw = ants_apply_transforms_to_points(2, pts, reg$fwdtransforms) ptsw }
Check if 'ANTs' is available
ants_available(module = c("ants", "antspynet"))
ants_available(module = c("ants", "antspynet"))
module |
either |
Logical, whether 'ANTs'
or 'ANTsPyNet'
is available
Print ants$motion_correction
to see the original document
ants_motion_correction( x, fixed = NULL, type_of_transform = "BOLDRigid", mask = NULL, fdOffset = 50, outprefix = "", verbose = FALSE, ... )
ants_motion_correction( x, fixed = NULL, type_of_transform = "BOLDRigid", mask = NULL, fdOffset = 50, outprefix = "", verbose = FALSE, ... )
x |
input image, usually 'fMRI' series |
fixed |
fixed image to register all timepoints to |
type_of_transform |
|
mask |
mask for image |
fdOffset |
offset value to use in frame-wise displacement calculation |
outprefix |
save path |
verbose |
whether to verbose the messages |
... |
passed to registration methods |
Motion-corrected image
if(interactive() && ants_available()) { fi <- as_ANTsImage(ants$get_ants_data('ch2')) mytx <- ants_motion_correction( fi ) par(mfrow = c(1, 2), mar = c(1,1,1,1)) image(fi[,,91], asp = 1, axes = FALSE) image(mytx$motion_corrected[,,91], asp = 1, axes = FALSE) }
if(interactive() && ants_available()) { fi <- as_ANTsImage(ants$get_ants_data('ch2')) mytx <- ants_motion_correction( fi ) par(mfrow = c(1, 2), mar = c(1,1,1,1)) image(fi[,,91], asp = 1, axes = FALSE) image(mytx$motion_corrected[,,91], asp = 1, axes = FALSE) }
'ANTsImage'
Plot single 'ANTsImage'
ants_plot( image, overlay = NULL, blend = FALSE, alpha = 1, cmap = "Greys_r", overlay_cmap = "turbo", overlay_alpha = 0.9, vminol = NULL, vmaxol = NULL, cbar = FALSE, cbar_length = 0.8, cbar_dx = 0, cbar_vertical = TRUE, axis = 0, nslices = 12, slices = NULL, ncol = NULL, slice_buffer = NULL, black_bg = TRUE, bg_thresh_quant = 0.01, bg_val_quant = 0.99, domain_image_map = NULL, crop = FALSE, scale = FALSE, reverse = FALSE, title = "", title_fontsize = 20, title_dx = 0, title_dy = 0, filename = NULL, dpi = 500, figsize = 1.5, reorient = TRUE, resample = TRUE, force_agg = FALSE, close_figure = TRUE )
ants_plot( image, overlay = NULL, blend = FALSE, alpha = 1, cmap = "Greys_r", overlay_cmap = "turbo", overlay_alpha = 0.9, vminol = NULL, vmaxol = NULL, cbar = FALSE, cbar_length = 0.8, cbar_dx = 0, cbar_vertical = TRUE, axis = 0, nslices = 12, slices = NULL, ncol = NULL, slice_buffer = NULL, black_bg = TRUE, bg_thresh_quant = 0.01, bg_val_quant = 0.99, domain_image_map = NULL, crop = FALSE, scale = FALSE, reverse = FALSE, title = "", title_fontsize = 20, title_dx = 0, title_dy = 0, filename = NULL, dpi = 500, figsize = 1.5, reorient = TRUE, resample = TRUE, force_agg = FALSE, close_figure = TRUE )
image |
|
overlay |
overlay |
blend |
whether to blend image with overlay; default is false |
cmap , alpha
|
image color map and transparency |
overlay_cmap , overlay_alpha
|
overlay color map and transparency |
vminol , vmaxol
|
I could not find its usage |
cbar |
whether to draw color legend |
cbar_length , cbar_dx , cbar_vertical
|
legend position and size |
axis |
see 'Details' |
nslices , slices , ncol
|
controls slice to show |
slice_buffer |
performance |
black_bg , bg_thresh_quant , bg_val_quant
|
controls background |
domain_image_map |
optional |
crop , scale , reverse
|
whether to crop, scale, or reverse the image according to background |
title , title_fontsize , title_dx , title_dy
|
image title |
filename , dpi , figsize
|
needed when saving to file |
reorient |
whether to reorient to |
resample |
whether to resample |
force_agg |
whether to force graphic engine to use |
close_figure |
whether to close figure when returning the function |
By default, images will be reoriented to 'LAI'
orientation before
plotting. So, if axis=0
, the images will be ordered from the
left side of the brain to the right side of the brain. If axis=1
,
the images will be ordered from the anterior (front) of the brain to
the posterior (back) of the brain. And if axis=2
, the images will
be ordered from the inferior (bottom) of the brain to the superior (top)
of the brain.
Nothing
if(interactive() && ants_available()) { ants <- load_ants() img <- ants$image_read(ants$get_ants_data('mni')) ants_plot( img, nslices = 12, black_bg = FALSE, bg_thresh_quant = 0.05, bg_val_quant = 1.0, axis = 2, cbar = TRUE, crop = TRUE, reverse = TRUE, cbar_vertical = FALSE, ncol = 4, title = "Axial view of MNI brain" ) }
if(interactive() && ants_available()) { ants <- load_ants() img <- ants$image_read(ants$get_ants_data('mni')) ants_plot( img, nslices = 12, black_bg = FALSE, bg_thresh_quant = 0.05, bg_val_quant = 1.0, axis = 2, cbar = TRUE, crop = TRUE, reverse = TRUE, cbar_vertical = FALSE, ncol = 4, title = "Axial view of MNI brain" ) }
'ANTsImage'
R-friendly wrapper function for ants$plot_grid
ants_plot_grid( images, shape = NULL, slices = 0, axes = 2, figsize = 1, rpad = 0, cpad = 0, vmin = NULL, vmax = NULL, colorbar = TRUE, cmap = "Greys_r", title = "", tfontsize = 20, title_dx = 0, title_dy = 0, rlabels = NULL, rfontsize = 14, rfontcolor = "black", rfacecolor = "white", clabels = NULL, cfontsize = 14, cfontcolor = "black", cfacecolor = "white", filename = NULL, dpi = 400, transparent = TRUE, ..., force_agg = FALSE, close_figure = TRUE )
ants_plot_grid( images, shape = NULL, slices = 0, axes = 2, figsize = 1, rpad = 0, cpad = 0, vmin = NULL, vmax = NULL, colorbar = TRUE, cmap = "Greys_r", title = "", tfontsize = 20, title_dx = 0, title_dy = 0, rlabels = NULL, rfontsize = 14, rfontcolor = "black", rfacecolor = "white", clabels = NULL, cfontsize = 14, cfontcolor = "black", cfacecolor = "white", filename = NULL, dpi = 400, transparent = TRUE, ..., force_agg = FALSE, close_figure = TRUE )
images |
a single |
shape |
shape of grid, default is using dimensions of |
slices |
length of one or equaling to length of |
axes |
|
figsize , rpad , cpad , colorbar , cmap , transparent
|
graphical parameters |
vmin , vmax
|
value threshold for the image |
title |
title of figure |
title_dx , title_dy , tfontsize
|
controls title margin and size |
rlabels , clabels
|
row and column labels |
rfontsize , rfontcolor , rfacecolor , cfontsize , cfontcolor , cfacecolor
|
row and column font size, color, and background color |
filename , dpi
|
parameters to save figures |
... |
passed to |
force_agg |
whether to force graphic engine to use |
close_figure |
whether to close figure when returning the function |
Nothing
if(interactive() && ants_available()) { ants <- load_ants() image1 <- ants$image_read(ants$get_ants_data('mni')) image2 <- image1$smooth_image(1.0) image3 <- image1$smooth_image(2.0) image4 <- image1$smooth_image(3.0) ants_plot_grid( list(image1, image2, image3, image4), slices = 100, title = "4x1 Grid" ) ants_plot_grid( list(image1, image2, image3, image4), shape = c(2, 2), slices = 100, title = "2x2 Grid" ) ants_plot_grid( list(image1, image2, image3, image4), shape = c(2, 2), axes = c(0,1,2,1), slices = 100, title = "2x2 Grid (diff. anatomical slices)" ) }
if(interactive() && ants_available()) { ants <- load_ants() image1 <- ants$image_read(ants$get_ants_data('mni')) image2 <- image1$smooth_image(1.0) image3 <- image1$smooth_image(2.0) image4 <- image1$smooth_image(3.0) ants_plot_grid( list(image1, image2, image3, image4), slices = 100, title = "4x1 Grid" ) ants_plot_grid( list(image1, image2, image3, image4), shape = c(2, 2), slices = 100, title = "2x2 Grid" ) ants_plot_grid( list(image1, image2, image3, image4), shape = c(2, 2), axes = c(0,1,2,1), slices = 100, title = "2x2 Grid (diff. anatomical slices)" ) }
Register two images using 'ANTs'
ants_registration( fixed, moving, type_of_transform = "SyN", initial_transform = NULL, outprefix = tempfile(), mask = NULL, grad_step = 0.2, flow_sigma = 3, total_sigma = 0, aff_metric = c("mattes", "GC", "meansquares"), aff_sampling = 32, aff_random_sampling_rate = 0.2, syn_metric = c("mattes", "CC", "meansquares", "demons"), syn_sampling = 32, reg_iterations = c(40, 20, 0), aff_iterations = c(2100, 1200, 1200, 10), aff_shrink_factors = c(6, 4, 2, 1), aff_smoothing_sigmas = c(3, 2, 1, 0), write_composite_transform = FALSE, verbose = FALSE, smoothing_in_mm = FALSE, ... )
ants_registration( fixed, moving, type_of_transform = "SyN", initial_transform = NULL, outprefix = tempfile(), mask = NULL, grad_step = 0.2, flow_sigma = 3, total_sigma = 0, aff_metric = c("mattes", "GC", "meansquares"), aff_sampling = 32, aff_random_sampling_rate = 0.2, syn_metric = c("mattes", "CC", "meansquares", "demons"), syn_sampling = 32, reg_iterations = c(40, 20, 0), aff_iterations = c(2100, 1200, 1200, 10), aff_shrink_factors = c(6, 4, 2, 1), aff_smoothing_sigmas = c(3, 2, 1, 0), write_composite_transform = FALSE, verbose = FALSE, smoothing_in_mm = FALSE, ... )
fixed |
fixed image to which we register the moving image, can be
character path to 'NIfTI' image, or |
moving |
moving image to be mapped to fixed space; see also |
type_of_transform |
a linear or non-linear registration type;
print |
initial_transform |
optional list of strings; transforms to apply prior to registration |
outprefix |
output file to save results |
mask |
image mask; see also |
grad_step , flow_sigma , total_sigma
|
optimization parameters |
aff_metric |
the metric for the 'affine' transformation, choices are
|
aff_sampling , aff_random_sampling_rate , aff_iterations , aff_shrink_factors , aff_smoothing_sigmas
|
controls 'affine' transform |
syn_metric |
the metric for the |
syn_sampling , reg_iterations
|
controls the |
write_composite_transform |
whether the composite transform (and its inverse, if it exists) should be written to an 'HDF5' composite file; default is false |
verbose |
verbose the progress |
smoothing_in_mm |
logical, currently only impacts low dimensional registration |
... |
others passed to |
Function family ants_registration*
align images (specified by
moving
) to fixed
. Here are descriptions of the variations:
ants_registration
Simple wrapper function for 'Python'
implementation ants.registration
, providing various of registration
options
ants_registration_halpern1
Rigid-body registration designed for 'Casey-Halpern' lab, mainly used for aligning 'MRI' to 'CT' (or the other way around)
A 'Python' dictionary of aligned images and transform files.
if(interactive() && ants_available()) { ants <- load_ants() # check the python documentation here for detailed explanation print(ants$registration) # example to register fi <- ants$image_read(ants$get_ants_data('r16')) mo <- ants$image_read(ants$get_ants_data('r64')) # resample to speed up this example fi <- ants$resample_image(fi, list(60L,60L), TRUE, 0L) mo <- ants$resample_image(mo, list(60L,60L), TRUE, 0L) # SDR transform transform <- ants_registration( fixed=fi, moving=mo, type_of_transform = 'SyN' ) ants$plot(fi, overlay = transform$warpedmovout, overlay_alpha = 0.3) }
if(interactive() && ants_available()) { ants <- load_ants() # check the python documentation here for detailed explanation print(ants$registration) # example to register fi <- ants$image_read(ants$get_ants_data('r16')) mo <- ants$image_read(ants$get_ants_data('r64')) # resample to speed up this example fi <- ants$resample_image(fi, list(60L,60L), TRUE, 0L) mo <- ants$resample_image(mo, list(60L,60L), TRUE, 0L) # SDR transform transform <- ants_registration( fixed=fi, moving=mo, type_of_transform = 'SyN' ) ants$plot(fi, overlay = transform$warpedmovout, overlay_alpha = 0.3) }
See ants$resample_image
for more details
ants_resample_image( x, resample_params, use_voxels = FALSE, interp_type = c("linear", "nn", "guassian", "sinc", "bspline") )
ants_resample_image( x, resample_params, use_voxels = FALSE, interp_type = c("linear", "nn", "guassian", "sinc", "bspline") )
x |
input image |
resample_params |
either relative number or absolute integers |
use_voxels |
whether the |
interp_type |
interpolation type; either integer or character; see 'Usage' for available options |
Resampled image
if(interactive() && ants_available()) { ants <- load_ants() fi <- as_ANTsImage(ants$get_ants_data("r16")) # linear (interp_type = 0 or "linear) filin <- ants_resample_image(fi, c(50, 60), TRUE, "linear") # nearest neighbor (interp_type = 1 or "nn) finn <- ants_resample_image(fi, c(50, 60), TRUE, "nn") par(mfrow = c(1, 3), mar = c(0, 0, 0, 0)) pal <- gray.colors(256, start = 0) image(fi[], asp = 1, axes = FALSE, ylim = c(1,0), col = pal) image(filin[], asp = 1, axes = FALSE, ylim = c(1,0), col = pal) image(finn[], asp = 1, axes = FALSE, ylim = c(1,0), col = pal) }
if(interactive() && ants_available()) { ants <- load_ants() fi <- as_ANTsImage(ants$get_ants_data("r16")) # linear (interp_type = 0 or "linear) filin <- ants_resample_image(fi, c(50, 60), TRUE, "linear") # nearest neighbor (interp_type = 1 or "nn) finn <- ants_resample_image(fi, c(50, 60), TRUE, "nn") par(mfrow = c(1, 3), mar = c(0, 0, 0, 0)) pal <- gray.colors(256, start = 0) image(fi[], asp = 1, axes = FALSE, ylim = c(1,0), col = pal) image(filin[], asp = 1, axes = FALSE, ylim = c(1,0), col = pal) image(finn[], asp = 1, axes = FALSE, ylim = c(1,0), col = pal) }
'ANTsPyNet'
moduleGet 'ANTsPyNet'
module
load_antspynet(force = FALSE, error_if_missing = TRUE)
load_antspynet(force = FALSE, error_if_missing = TRUE)
force |
whether to force reloading |
error_if_missing |
whether to raise errors when the module is unable to load; default is true. |
A 'Python' module if successfully loaded. If error_if_missing
is set to false and module is unable to load, return NULL
Print antspynet$brain_extraction
to see the original documentation.
antspynet_brain_extraction( x, modality = c("t1", "t1nobrainer", "t1combined", "flair", "t2", "t2star", "bold", "fa", "t1t2infant", "t1infant", "t2infant"), verbose = FALSE )
antspynet_brain_extraction( x, modality = c("t1", "t1nobrainer", "t1combined", "flair", "t2", "t2star", "bold", "fa", "t1t2infant", "t1infant", "t2infant"), verbose = FALSE )
x |
input image or image path |
modality |
modality type |
verbose |
whether to print out process to the screen |
Brain mask image
Strip skulls, normalize intensity, align and re-sample to template. This
procedure is needed for many antspynet
functions since the deep
neural networks are trained in template spaces
antspynet_preprocess_brain_image( x, truncate_intensity = c(0.01, 0.99), brain_extraction_modality = c("none", "t1", "t1v0", "t1nobrainer", "t1combined", "flair", "t2", "bold", "fa", "t1infant", "t2infant"), template_transform_type = c("None", "Affine", "Rigid"), template = c("biobank", "croppedMni152"), do_bias_correction = TRUE, return_bias_field = FALSE, do_denoising = TRUE, intensity_matching_type = c("regression", "histogram"), reference_image = NULL, intensity_normalization_type = NULL, verbose = TRUE )
antspynet_preprocess_brain_image( x, truncate_intensity = c(0.01, 0.99), brain_extraction_modality = c("none", "t1", "t1v0", "t1nobrainer", "t1combined", "flair", "t2", "bold", "fa", "t1infant", "t2infant"), template_transform_type = c("None", "Affine", "Rigid"), template = c("biobank", "croppedMni152"), do_bias_correction = TRUE, return_bias_field = FALSE, do_denoising = TRUE, intensity_matching_type = c("regression", "histogram"), reference_image = NULL, intensity_normalization_type = NULL, verbose = TRUE )
x |
|
truncate_intensity |
defines the quantile threshold for truncating the image intensity |
brain_extraction_modality |
character of length 1, perform brain extraction modality |
template_transform_type |
either |
template |
template image (not skull-stripped) or string, e.g.
|
do_bias_correction |
whether to perform bias field correction |
return_bias_field |
return bias field as an additional output without bias correcting the image |
do_denoising |
whether to remove noises using non-local means |
intensity_matching_type |
either |
reference_image |
|
intensity_normalization_type |
either re-scale the intensities to
|
verbose |
print progress to the screen |
Dictionary with images after process. The images are registered and re-sampled into template.
antspynet$preprocess_brain_image
library(rpyANTs) if(interactive() && ants_available("antspynet")) { image_path <- ants$get_ants_data('r30') preprocessed <- antspynet_preprocess_brain_image( image_path, verbose = FALSE ) # Compare orig_img <- as_ANTsImage(image_path) new_img <- preprocessed$preprocessed_image pal <- grDevices::gray.colors(256, start = 0, end = 1) par(mfrow = c(1, 2), mar = c(0.1, 0.1, 0.1, 0.1), bg = "black", fg = "white") image(orig_img[], asp = 1, axes = FALSE, col = pal, ylim = c(1, 0)) image(new_img[], asp = 1, axes = FALSE, col = pal, ylim = c(1, 0)) }
library(rpyANTs) if(interactive() && ants_available("antspynet")) { image_path <- ants$get_ants_data('r30') preprocessed <- antspynet_preprocess_brain_image( image_path, verbose = FALSE ) # Compare orig_img <- as_ANTsImage(image_path) new_img <- preprocessed$preprocessed_image pal <- grDevices::gray.colors(256, start = 0, end = 1) par(mfrow = c(1, 2), mar = c(0.1, 0.1, 0.1, 0.1), bg = "black", fg = "white") image(orig_img[], asp = 1, axes = FALSE, col = pal, ylim = c(1, 0)) image(new_img[], asp = 1, axes = FALSE, col = pal, ylim = c(1, 0)) }
antspynet
Supports Desikan-Killiany-Tourville
labeling and deep 'Atropos'
.
antspynet_desikan_killiany_tourville_labeling( x, do_preprocessing = TRUE, return_probability_images = FALSE, do_lobar_parcellation = FALSE, verbose = TRUE ) antspynet_deep_atropos( x, do_preprocessing = TRUE, use_spatial_priors = TRUE, aseg_only = TRUE, verbose = TRUE )
antspynet_desikan_killiany_tourville_labeling( x, do_preprocessing = TRUE, return_probability_images = FALSE, do_lobar_parcellation = FALSE, verbose = TRUE ) antspynet_deep_atropos( x, do_preprocessing = TRUE, use_spatial_priors = TRUE, aseg_only = TRUE, verbose = TRUE )
x |
|
do_preprocessing |
whether |
return_probability_images |
whether to return probability images |
do_lobar_parcellation |
whether to perform lobar 'parcellation' |
verbose |
whether to print out the messages |
use_spatial_priors |
whether to use |
aseg_only |
whether to just return the segmented image |
One or a list of 'ANTsImage'
image instances. Please print
out antspynet$desikan_killiany_tourville_labeling
or
antspynet$deep_atropos
to see the details.
antspynet$desikan_killiany_tourville_labeling
,
antspynet$deep_atropos
# Print Python documents if(interactive() && ants_available("antspynet")) { antspynet <- load_antspynet() print(antspynet$deep_atropos) print(antspynet$desikan_killiany_tourville_labeling) }
# Print Python documents if(interactive() && ants_available("antspynet")) { antspynet <- load_antspynet() print(antspynet$deep_atropos) print(antspynet$desikan_killiany_tourville_labeling) }
'ANTsImage'
classLoad data as 'ANTsImage'
class
as_ANTsImage(x, strict = FALSE)
as_ANTsImage(x, strict = FALSE)
x |
data to be converted; this can be an |
strict |
whether |
An 'ANTsImage'
instance; use ants$ANTsImage
to see
the 'Python' documentation
if(interactive() && ants_available()) { ants <- load_ants() # Python string x1 <- ants$get_ants_data('r16') as_ANTsImage( x1 ) # R character nii_path <- system.file(package = "RNifti", "extdata", "example.nii.gz") as_ANTsImage( nii_path ) # niftiImage object x2 <- RNifti::readNifti(nii_path) as_ANTsImage( x2 ) }
if(interactive() && ants_available()) { ants <- load_ants() # Python string x1 <- ants$get_ants_data('r16') as_ANTsImage( x1 ) # R character nii_path <- system.file(package = "RNifti", "extdata", "example.nii.gz") as_ANTsImage( nii_path ) # niftiImage object x2 <- RNifti::readNifti(nii_path) as_ANTsImage( x2 ) }
'ANTsTransform'
Convert to 'ANTsTransform'
as_ANTsTransform(x, ...) ## Default S3 method: as_ANTsTransform(x, dimension = 3, ...) ## S3 method for class 'ants.core.ants_transform.ANTsTransform' as_ANTsTransform(x, ...) ## S3 method for class 'ants.core.ants_image.ANTsImage' as_ANTsTransform(x, ...) ## S3 method for class 'numpy.ndarray' as_ANTsTransform(x, ...) ## S3 method for class 'character' as_ANTsTransform(x, ...)
as_ANTsTransform(x, ...) ## Default S3 method: as_ANTsTransform(x, dimension = 3, ...) ## S3 method for class 'ants.core.ants_transform.ANTsTransform' as_ANTsTransform(x, ...) ## S3 method for class 'ants.core.ants_image.ANTsImage' as_ANTsTransform(x, ...) ## S3 method for class 'numpy.ndarray' as_ANTsTransform(x, ...) ## S3 method for class 'character' as_ANTsTransform(x, ...)
x |
'affine' matrix or |
... |
passed to other methods |
dimension |
expected transform space dimension; default is 3 |
An 'ANTsTransform'
object
if(interactive() && ants_available()) { mat <- matrix(c( 0, -1, 0, 128, 1, 0, 0, -128, 0, 0, -1, 128, 0, 0, 0, 1 ), ncol = 4, byrow = TRUE) trans <- as_ANTsTransform(mat) trans # apply transform trans$apply_to_point(c(120, 400, 1)) # same results mat %*% c(120, 400, 1, 1) trans[] == mat }
if(interactive() && ants_available()) { mat <- matrix(c( 0, -1, 0, 128, 1, 0, 0, -128, 0, 0, -1, 128, 0, 0, 0, 1 ), ncol = 4, byrow = TRUE) trans <- as_ANTsTransform(mat) trans # apply transform trans$apply_to_point(c(120, 400, 1)) # same results mat %*% c(120, 400, 1, 1) trans[] == mat }
Uses ants.abp_n4
to truncate and correct intensity
correct_intensity(image, mask = NULL, intensity_truncation = c(0.025, 0.975))
correct_intensity(image, mask = NULL, intensity_truncation = c(0.025, 0.975))
image |
'MRI' image to be corrected, will be passed to
|
mask |
binary mask image |
intensity_truncation |
numerical length of two, quantile probabilities to truncate. |
An 'ANTsImage'
instance
if(interactive() && ants_available()) { ants <- load_ants() scale <- (0.1 + outer( seq(0, 1, length.out = 256)^6, seq(0, 1, length.out = 256)^2, FUN = "+" )) / 6 img = ants$image_read(ants$get_ants_data('r16')) * scale corrected <- correct_intensity(img) pal <- gray.colors(255, start = 0) par(mfrow = c(1, 2), mar = c(0.1, 0.1, 2.1, 0.1), bg = "black", fg = "white") image(img[], asp = 1, axes = FALSE, col = pal, ylim = c(1, 0), main = "Original", col.main = "white") image(corrected[], asp = 1, axes = FALSE, col = pal, ylim = c(1, 0), main = "Corrected", col.main = "white") }
if(interactive() && ants_available()) { ants <- load_ants() scale <- (0.1 + outer( seq(0, 1, length.out = 256)^6, seq(0, 1, length.out = 256)^2, FUN = "+" )) / 6 img = ants$image_read(ants$get_ants_data('r16')) * scale corrected <- correct_intensity(img) pal <- gray.colors(255, start = 0) par(mfrow = c(1, 2), mar = c(0.1, 0.1, 2.1, 0.1), bg = "black", fg = "white") image(img[], asp = 1, axes = FALSE, col = pal, ylim = c(1, 0), main = "Original", col.main = "white") image(corrected[], asp = 1, axes = FALSE, col = pal, ylim = c(1, 0), main = "Corrected", col.main = "white") }
Ensure the template directory is downloaded
ensure_template(name = BUILTIN_TEMPLATES)
ensure_template(name = BUILTIN_TEMPLATES)
name |
name of the template, commonly known as |
The downloaded template path
# Do not run for testing as this will download the template if(FALSE) { # Default is `mni_icbm152_nlin_asym_09a` ensure_template() ensure_template("mni_icbm152_nlin_asym_09a") # Using MNI152b ensure_template("mni_icbm152_nlin_asym_09b") }
# Do not run for testing as this will download the template if(FALSE) { # Default is `mni_icbm152_nlin_asym_09a` ensure_template() ensure_template("mni_icbm152_nlin_asym_09a") # Using MNI152b ensure_template("mni_icbm152_nlin_asym_09b") }
'ANTs' functions for 'Halpern' lab
halpern_register_ct_mri( fixed, moving, outprefix, fixed_is_ct = TRUE, verbose = TRUE ) halpern_register_template_mri( fixed, moving, outprefix, mask = NULL, verbose = TRUE ) halpern_apply_transform_template_mri(roi_folder, outprefix, verbose = TRUE)
halpern_register_ct_mri( fixed, moving, outprefix, fixed_is_ct = TRUE, verbose = TRUE ) halpern_register_template_mri( fixed, moving, outprefix, mask = NULL, verbose = TRUE ) halpern_apply_transform_template_mri(roi_folder, outprefix, verbose = TRUE)
fixed |
fixed image as template |
moving |
moving image that is to be registered into |
outprefix |
output prefix, needs to be absolute path prefix |
fixed_is_ct |
whether |
verbose |
whether to verbose the progress; default is true |
mask |
mask file for template (skull-stripped) |
roi_folder |
template 'ROI' or atlas folder in which the image atlases or masks will be transformed into subject's native brain |
A list of result configurations
Install 'ANTs' via 'ANTsPy'
install_ants(python_ver = "3.9", verbose = TRUE)
install_ants(python_ver = "3.9", verbose = TRUE)
python_ver |
'Python' version, see |
verbose |
whether to print the installation messages |
This function returns nothing.
Check if an object is a 3D 'affine' transform matrix
is_affine3D(x, ...) ## Default S3 method: is_affine3D(x, strict = TRUE, ...) ## S3 method for class 'ants.core.ants_transform.ANTsTransform' is_affine3D(x, ...)
is_affine3D(x, ...) ## Default S3 method: is_affine3D(x, strict = TRUE, ...) ## S3 method for class 'ants.core.ants_transform.ANTsTransform' is_affine3D(x, ...)
x |
R or Python object, accepted forms are numeric |
... |
passed to other methods |
strict |
whether the last element should be always 1 |
A logical value whether the object can be loaded as a 4-by-4 matrix.
# not affine is_affine3D(1) # 3x3 matrix is not as it is treated as 2D transform is_affine3D(matrix(rnorm(9), nrow = 3)) # 3x4 matrix x <- matrix(rnorm(12), nrow = 3) is_affine3D(x) # 4x4 matrix x <- rbind(x, c(0,0,0,1)) is_affine3D(x) if(interactive() && ants_available()) { ants <- load_ants() x <- ants$new_ants_transform(dimension = 3L) is_affine3D(x) # save the parameters f <- tempfile(fileext = ".mat") ants$write_transform(x, f) is_affine3D(f) }
# not affine is_affine3D(1) # 3x3 matrix is not as it is treated as 2D transform is_affine3D(matrix(rnorm(9), nrow = 3)) # 3x4 matrix x <- matrix(rnorm(12), nrow = 3) is_affine3D(x) # 4x4 matrix x <- rbind(x, c(0,0,0,1)) is_affine3D(x) if(interactive() && ants_available()) { ants <- load_ants() x <- ants$new_ants_transform(dimension = 3L) is_affine3D(x) # save the parameters f <- tempfile(fileext = ".mat") ants$write_transform(x, f) is_affine3D(f) }
Get 'Python' main process environment
py
py
An object of class python.builtin.module
(inherits from python.builtin.object
) of length 1.
The 'Python' main process as a module
Get 'Python' built-in object
py_builtin(name, convert = TRUE)
py_builtin(name, convert = TRUE)
name |
object name |
convert |
see |
A python built-in object specified by name
if(interactive() && ants_available()) { # ------ Basic case: use python `int` as an R function --------- py_int <- py_builtin("int") # a is an R object now a <- py_int(9) print(a) class(a) # ------ Use python `int` as a Python function ----------------- py_int2 <- py_builtin("int", convert = FALSE) # b in a python object b <- py_int2(9) # There is no '[1] ' when printing print(b) class(b) # convert to R object py_to_r(b) }
if(interactive() && ants_available()) { # ------ Basic case: use python `int` as an R function --------- py_int <- py_builtin("int") # a is an R object now a <- py_int(9) print(a) class(a) # ------ Use python `int` as a Python function ----------------- py_int2 <- py_builtin("int", convert = FALSE) # b in a python object b <- py_int2(9) # There is no '[1] ' when printing print(b) class(b) # convert to R object py_to_r(b) }
List in 'Python'
py_list(..., convert = FALSE)
py_list(..., convert = FALSE)
... |
passing to |
convert |
whether to convert the results back into R; default is no |
List instance, or an R vector if converted
if(interactive() && ants_available()) { py_list(list(1,2,3)) py_list(c(1,2,3)) py_list(array(1:9, c(3,3))) py_list(list(list(1:3), letters[1:3])) }
if(interactive() && ants_available()) { py_list(list(1,2,3)) py_list(c(1,2,3)) py_list(array(1:9, c(3,3))) py_list(list(list(1:3), letters[1:3])) }
Slice index in 'Python' arrays
py_slice(...)
py_slice(...)
... |
passing to |
Index slice instance
if(interactive() && ants_available()) { x <- np_array(array(seq(20), c(4, 5))) # equivalent to x[::2] x[py_slice(NULL, NULL, 2L)] }
if(interactive() && ants_available()) { x <- np_array(array(seq(20), c(4, 5))) # equivalent to x[::2] x[py_slice(NULL, NULL, 2L)] }
Process 'MRI' and align with template brains
t1_preprocess( t1_path, templates = "mni_icbm152_nlin_asym_09a", work_path = ".", verbose = TRUE )
t1_preprocess( t1_path, templates = "mni_icbm152_nlin_asym_09a", work_path = ".", verbose = TRUE )
t1_path |
path to a 'T1' image |
templates |
template to use; default is |
work_path |
working path, must be a directory |
verbose |
whether to verbose the progress |
Nothing will be returned. Please check work_path
for results.