Package 'dipsaus'

Title: A Dipping Sauce for Data Analysis and Visualizations
Description: Works as an "add-on" to packages like 'shiny', 'future', as well as 'rlang', and provides utility functions. Just like dipping sauce adding flavors to potato chips or pita bread, 'dipsaus' for data analysis and visualizations adds handy functions and enhancements to popular packages. The goal is to provide simple solutions that are frequently asked for online, such as how to synchronize 'shiny' inputs without freezing the app, or how to get memory size on 'Linux' or 'MacOS' system. The enhancements roughly fall into these four categories: 1. 'shiny' input widgets; 2. high-performance computing using the 'future' package; 3. modify R calls and convert among numbers, strings, and other objects. 4. utility functions to get system information such like CPU chip-set, memory limit, etc.
Authors: Zhengjia Wang [aut, cre], John Magnotti [ctb] (Contributed to `rutabaga.R`), Xiang Zhang [ctb] (Contributed to `rutabaga.R`)
Maintainer: Zhengjia Wang <[email protected]>
License: GPL-3
Version: 0.2.9.9000
Built: 2024-11-02 05:44:21 UTC
Source: https://github.com/dipterix/dipsaus

Help Index


Left-hand side checked assignment Provides a way to assign default values to variables. If the statement 'lhs' is invalid or NULL, this function will try to assign value, otherwise nothing happens.

Description

Left-hand side checked assignment Provides a way to assign default values to variables. If the statement 'lhs' is invalid or NULL, this function will try to assign value, otherwise nothing happens.

Usage

lhs %?<-% value

Arguments

lhs

an object to check or assign

value

value to be assigned if lhs is NULL

Value

Assign value on the right-hand side to the left-hand side if lhs does not exist or is NULL

Examples

# Prepare, remove aaa if exists
if(exists('aaa', envir = globalenv(), inherits = FALSE)){
  rm(aaa, envir = globalenv())
}

# Assign
aaa %?<-% 1; print(aaa)

# However, if assigned, nothing happens
aaa = 1;
aaa %?<-% 2;
print(aaa)

# in a list
a = list()
a$e %?<-% 1; print(a$e)
a$e %?<-% 2; print(a$e)

Plus-minus operator

Description

Plus-minus operator

Usage

a %+-% b

Arguments

a, b

numeric vectors, matrices or arrays

Value

a +/- b, the dimension depends on a+b. If a+b is a scalar, returns a vector of two; in the case of vector, returns a matrix; all other cases will return an array with the last dimension equal to 2.

Examples

# scalar
1 %+-% 2   # -1, 3

# vector input
c(1,2,3) %+-% 2   # matrix

# matrix input
matrix(1:9, 3) %+-% 2   # 3x3x2 array

Right-hand side checked assignment Provides a way to avoid assignment to the left-hand side. If the statement 'value' is invalid or NULL, this function will not assign values and nothing happens.

Description

Right-hand side checked assignment Provides a way to avoid assignment to the left-hand side. If the statement 'value' is invalid or NULL, this function will not assign values and nothing happens.

Usage

lhs %<-?% value

Arguments

lhs

an object to be assigned to

value

value to be checked

Value

Assign value on the right-hand side to the left-hand side if value does exists and is not NULL

Examples

# Prepare, remove aaa if exists
if(exists('aaa', envir = globalenv(), inherits = FALSE)){
  rm(aaa, envir = globalenv())
}

# aaa will not be assigned. run `print(aaa)` will raise error
aaa %<-?% NULL

# Assign
aaa %<-?% 1
print(aaa)

# in a list
a = list()
a$e %<-?% bbb; print(a$e)
a$e %<-?% 2; print(a$e)

A JavaScript style of creating functions

Description

A JavaScript style of creating functions

Usage

args %=>% expr

Arguments

args

function arguments: see formals

expr

R expression that forms the body of functions: see body

Value

A function that takes args as parameters and expr as the function body

Examples

# Formal arguments
c(a) %=>% {
  print(a)
}

# Informal arguments
list(a=) %=>% {
  print(a)
}

# Multiple inputs
c(a, b = 2, ...) %=>% {
  print(c(a, b, ...))
}

# ----- JavaScript style of forEach -----
# ### Equivalent JavaScript Code:
# LETTERS.forEach((el, ii) => {
#   console.log('The index of letter ' + el + ' in "x" is: ' + ii);
# });

iapply(LETTERS, c(el, ii) %=>% {
  cat2('The index of letter ', el, ' in ', sQuote('x'), ' is: ', ii)
}) -> results

Get an element with condition that it must be from a list or vector

Description

Get an element with condition that it must be from a list or vector

Usage

lhs %OF% rhs

Arguments

lhs

the element of candidate

rhs

the constraint

Value

Returns an element of length one that will be from rhs

Examples

# C is from LETTERS, therefore returns `C`
"C" %OF% LETTERS


# `lhs` is not from `rhs`, hence return the first element of LETTERS
'9' %OF% LETTERS
NULL %OF% LETTERS

# When there are multiple elements from `lhs`, select the first that
# matches the constraint
c('9', "D", "V") %OF% LETTERS

Abstract Map to store key-value pairs

Description

Abstract Map to store key-value pairs


Defines abstract queue class

Description

This class is inspired by https://cran.r-project.org/package=txtq. The difference is AbstractQueue introduce an abstract class that can be extended and can queue not only text messages, but also arbitrary R objects, including expressions and environments. All the queue types in this package inherit this class.

Abstract Public Methods

Methods start with @... are not thread-safe. Most of them are not used directly by users. However, you might want to override them if you inherit this abstract class. Methods marked as "(override)" are not implemented, meaning you are supposed to implement the details. Methods marked as "(optional)" usually have default alternatives.

initialize(...) (override)

The constructor. Usually three things to do during the process: 1. set get_locker free_locker if you don't want to use the default lockers. 2. set lock file (if using default lockers). 3. call self$connect(...)

get_locker(), free_locker() (optional)

Default is NULL for each methods, and queue uses an internal private$default_get_locker and private$default_free_locker. These two methods are for customized locker, please implement these two methods as functions during self$initialization get_locker obtains and lock access (exclusive), and free_locker frees the locker. Once implemented, private$exclusive will take care the rest. Type: function; parameters: none; return: none

@get_head(), @set_head(v) (override)

Get head so that we know where we are in the queue self$@get_head() should return a integer indicating where we are at the queue self$@set_head(v) stores that integer. Parameter v is always non-negative, this is guaranteed. Users are not supposed to call these methods directly, use self$head and self$head<- instead. However, if you inherit this class, you are supposed to override the methods.

@get_total(), @set_total(v) (override)

Similar to @get_head and @set_head, defines the total items ever stored in the queue. total-head equals current items in the queue.

@inc_total(n=1) (optional)

Increase total, usually this doesn't need to be override, unless you are using files to store total and want to decrease number of file connections

@append_header(msg, ...) (override)

msg will be vector of strings, separated by "|", containing encoded headers: ‘time', 'key', 'hash', and 'message'. to decode what’s inside, you can use self$print_items(stringr::str_split_fixed(msg, '\|', 4)). Make sure to return a number, indicating number of items stored. Unless handled elsewhere, usually return(length(msg)).

@store_value(value, key) (override)

Defines how to store value. 'key' is unique identifier generated from time, queue ID, and value. Usually I use it as file name or key ID in database. value is an arbitrary R object to store. you need to store value somewhere and return a string that will be passed as 'hash' in self$restore_value.

restore_value(hash, key, preserve = FALSE) (override)

Method to restore value from given combination of 'hash' and 'key'. 'hash' is the string returned by @store_value, and 'key' is the same as key in @store_value. preserve is a indicator of whether to preserve the value for future use. If set to FALSE, then you are supposed to free up the resource related to the value. (such as free memory or disk space)

@log(n = -1, all = FALSE) (override)

get n items from what you saved to during @append_header. n less equal than 0 means listing all possible items. If all=TRUE, return all items (number of rows should equals to self$total), including popped items. If all=FALSE, only return items in the queue (number of rows is self$count). The returned value should be a n x 4 matrix. Usually I use stringr::str_split_fixed(..., '\|', 4). Please see all other types implemented for example.

@reset(...) (override)

Reset queue, remove all items and reset head, total to be 0.

@clean() (override)

Clean the queue, remove all the popped items.

@validate() (override)

Validate the queue. Stop if the queue is broken.

@connect(con, ...) (override)

Set up connection. Usually should be called at the end of self$initialization to connect to a database, a folder, or an existing queue you should do checks whether the connection is new or it's an existing queue.

connect(con, ...) (optional)

Thread-safe version. sometimes you need to override this function instead of @connect, because private$exclusive requires lockfile to exist and to be locked. If you don't have lockers ready, or need to set lockers during the connection, override this one.

destroy() (optional)

Destroy a queue, free up space and call delayedAssign('.lockfile', {stop(...)}, assign.env=private) to raise error if a destroyed queue is called again later.

Public Methods

Usually don't need to override unless you know what you are doing.

push(value, message='',...)

Function to push an arbitrary R object to queue. message is a string giving notes to the pushed item. Usually message is stored with header, separated from values. The goal is to describe the value. ... is passed to @append_header

pop(n = 1, preserve = FALSE)

Pop n items from the queue. preserve indicates whether not to free up the resources, though not always guaranteed.

print_item(item), print_items(items)

To decode matrix returned by log(), returning named list or data frame with four heads: 'time', 'key', 'hash', and 'message'.

list(n=-1)

List items in the queue, decoded. If n is less equal than 0, then list all results. The result is equivalent to self$print_items(self$log(n))

log(n=-1,all=FALSE)

List items in the queue, encoded. This is used with self$print_items. When all=TRUE, result will list the records ever pushed to the queue since the last time queue is cleaned. When all=FALSE, results will be items in the queue. n is the number of items.

Public Active Bindings

id

Read-only property. Returns unique ID of current queue.

lockfile

The lock file.

head

Integer, total number of items popped, i.e. inactive items.

total

Total number of items ever pushed to the queue since last cleaned, integer.

count

Integer, read-only, equals to total - head, number of active items in the queue

Private Methods or properties

.id

Don't use directly. Used to store queue ID.

.lockfile

Location of lock file.

lock

Preserve the file lock.

exclusive(expr,...)

Function to make sure the methods are thread-safe

default_get_locker()

Default method to lock a queue

default_free_locker

Default method to free a queue


Action Button but with customized styles

Description

Action Button but with customized styles

Usage

actionButtonStyled(
  inputId,
  label,
  icon = NULL,
  width = NULL,
  type = "primary",
  btn_type = "button",
  class = "",
  ...
)

Arguments

inputId, label, icon, width, ...

passed to shiny::actionButton

type

button type, choices are 'default', 'primary', 'info', 'success', 'warning', and 'danger'

btn_type

HTML tag type, either "button" or "a"

class

additional classes to be added to the button

Value

'HTML' tags

See Also

updateActionButtonStyled for how to update the button.

Examples

# demo('example-actionButtonStyled', package='dipsaus')

library(shiny)
library(dipsaus)

ui <- fluidPage(
  actionButtonStyled('btn', label = 'Click me', type = 'default'),
  actionButtonStyled('btn2', label = 'Click me2', type = 'primary')
)


server <- function(input, output, session) {
  btn_types = c('default', 'primary', 'info', 'success', 'warning', 'danger')
  observeEvent(input$btn, {
    btype = btn_types[((input$btn-1) %% (length(btn_types)-1)) + 1]
    updateActionButtonStyled(session, 'btn2', type = btype)
  })
  observeEvent(input$btn2, {
    updateActionButtonStyled(session, 'btn',
                             disabled = c(FALSE,TRUE)[(input$btn2 %% 2) + 1])
  })
}


if( interactive() ){
  shinyApp(ui, server, options = list(launch.browser=TRUE))
}

Store/Get key-value pairs in 'shiny' session

Description

If key is missing, it'll be created, otherwise ignored or overwritten.

Usage

add_to_session(
  session,
  key = "rave_id",
  val = paste(sample(c(letters, LETTERS, 0:9), 20), collapse = ""),
  override = FALSE
)

Arguments

session

'Shiny' session

key

character, key to store

val

value to store

override

if key exists, whether to overwrite its value

Value

If session is shiny session, returns current value stored in session, otherwise returns NULL


Convert functions to pipe-friendly functions

Description

Convert functions to pipe-friendly functions

Usage

as_pipe(
  x,
  ...,
  call,
  arg_name,
  .name = arg_name,
  .env = parent.frame(),
  .quoted = FALSE
)

Arguments

x

R object as input

...

default arguments explicitly display in the returned function

call

a function call, or the function itself

arg_name

argument name to be varied. This argument will be the first argument in the new function so it's pipe-friendly.

.name

new argument name; default is the same as arg_name

.env

executing environment

.quoted

whether call has been quoted

Value

If x is missing, returns a function that takes one argument, otherwise run the function with given x

Examples

# modify a function call
vary_title <- as_pipe(call = plot(1:10, 1:10),
                      pch = 16,
                      arg_name = 'main',
                      .name = 'title')
vary_title

# vary_title is pipe-friendly with `pch` default 16
vary_title(title = 'My Title')

# `pch` is explicit
vary_title(title = 'My Title', pch = 1)

# other variables are implicit
vary_title(title = 'My Title', type = 'l')


# modify a function

f <- function(b = 1, x){ b + x }
f_pipable <- as_pipe(call = f, arg_name = 'x')
f_pipable

f_pipable(2)

# Advanced use

# Set option dipsaus.debug.as_pipe=TRUE to debug
options("dipsaus.debug.as_pipe" = TRUE)

# Both `.(z)` and `z` work

image2 <- as_pipe(call = image(
  x = seq(0, 1, length.out = nrow(z)),
  y = 1:ncol(z),
  z = matrix(1:16, 4),
  xlab = "Time", ylab = "Freq",
  main = "Debug"
), arg_name = 'z')

# main can be overwritten
image2(matrix(1:50, 5), main = "Production")


# reset debug option
options("dipsaus.debug.as_pipe" = FALSE)

Read a Line from the Terminal, but with Default Values

Description

Ask a question and read from the terminal in interactive scenario

Usage

ask_or_default(..., default = "", end = "", level = "INFO")

Arguments

..., end, level

passed to cat2

default

default value to return in case of blank input

Details

The prompt string will ask a question, providing defaults. Users need to enter the answer. If the answer is blank (no space), then returns the default, otherwise returns the user input.

This can only be used in an interactive session.

Value

A character from the user's input, or the default value. See details.

See Also

cat2, readline, ask_yesno

Examples

if(interactive()){
ask_or_default('What is the best programming language?',
               default = 'PHP')
}

Ask and Return True or False from the Terminal

Description

Ask a question and read from the terminal in interactive scenario

Usage

ask_yesno(
  ...,
  end = "",
  level = "INFO",
  error_if_canceled = TRUE,
  use_rs = TRUE,
  ok = "Yes",
  cancel = "No",
  rs_title = "Yes or No:"
)

Arguments

..., end, level

passed to cat2

error_if_canceled

raise error if canceled

use_rs

whether to use rstudioapi if possible

ok

button label for yes

cancel

button label for no

rs_title

message title if 'RStudio' question box pops up.

Details

The prompt string will ask for an yes or no question. Users need to enter "y", "yes" for yes, "n", "no" or no, and "c" for cancel (case-insensitive).

This can only be used in an interactive session.

Value

logical or NULL or raise an error. If "yes" is entered, returns TRUE; if "no" is entered, returns FALSE; if "c" is entered, error_if_canceled=TRUE will result in an error, otherwise return NULL

See Also

cat2, readline, ask_or_default

Examples

if(interactive()){
ask_yesno('Do you know how hard it is to submit an R package and ',
          'pass the CRAN checks?')
ask_yesno('Can I pass the CRAN check this time?')
}

Evaluate expression in async_expr

Description

Evaluate expression in async_expr

Usage

async(expr)

Arguments

expr

R expression

See Also

async_expr


Apply R expressions in a parallel way

Description

Apply R expressions in a parallel way

Usage

async_expr(
  .X,
  .expr,
  .varname = "x",
  envir = parent.frame(),
  .pre_run = NULL,
  .ncore = future::availableCores(),
  ...
)

Arguments

.X

a vector or a list to apply evaluation on

.expr

R expression, unquoted

.varname

variable name representing element of each .X

envir

environment to evaluate expressions

.pre_run

expressions to be evaluated before looping.

.ncore

number of CPU cores

...

passed to future::future

Details

async_expr uses lapply and future::future internally. Within each loop, an item in ".X" will be assigned to variable "x" (defined by ".varname") and enter the evaluation. During the evaluation, function async is provided. Expressions within async will be evaluated in another session, otherwise will be evaluated in current session. Below is the workflow:

  • Run .pre_run

  • For i in seq_along(.X):

    • 1. Assign x with .X[[i]], variable name x is defined by .varname

    • 2. Evaluate expr in current session.

      • a. If async is not called, return evaluated expr

      • b. If async(aync_expr) is called, evaluate aync_expr in another session, and return the evaluation results if aync_expr

Value

a list whose length equals to .X. The value of each item returned depends on whether async is called. See details for workflow.


Wrapper for future.apply::future_lapply

Description

Wrapper for future.apply::future_lapply

Usage

async_flapply(X, FUN, ...)

Arguments

X, FUN, ...

passing to future.apply::future_lapply

See Also

future_lapply


Run jobs in other R sessions without waiting

Description

This function has been deprecated. Please use lapply_callr instead.

Usage

async_works(
  X,
  FUN,
  ...,
  .globals = NULL,
  .name = "Untitled",
  .rs = FALSE,
  .wait = TRUE,
  .chunk_size = Inf,
  .nworkers = future::availableCores(),
  .simplify = FALSE,
  .quiet = FALSE,
  .log
)

Arguments

X

vector or list to be applied

FUN

function with the first argument to be each element of X

...

further arguments to be passed to FUN

.globals

global variables to be evaluated in FUN

.name

job names, used if backed by rstudioapi jobs

.rs

whether to use rstudioapi jobs

.wait

whether to wait for the results

.chunk_size

used only when .wait=FALSE, chunk size for each workers at a time. Only useful for printing progress messages, but might slow down the process when .chunk_size is too small

.nworkers

number of workers at a time

.simplify

whether to simplify the results, i.e. merge list of results to vectors or arrays

.quiet

whether to suppress the printing messages

.log

internally used

Details

Unlike future package, where the global variables can be automatically detected, async_works require users to specify global variables explicitly via .globals

async_works is almost surely slower than future.apply packages. However, it provides a functionality that future.apply can hardly achieve: being non-block. When setting .wait=FALSE, the process will run in the background, and one may run as many of these tasks as they want. This is especially useful when large data generating process occurs ( such as read in from a file, process, generate summarizing reports).

Value

If .wait=TRUE, returns the applied results of FUN on each of X. The result types depend on .simplify (compare the difference between lapply and sapply). If .wait=FALSE, then returns a function that can check the result. The function takes timeout argument that blocks the session at most timeout seconds waiting for the results. See examples.

Examples

## Not run: 
# requires a sub-process to run the code

# Basic usage
a <- 1
async_works(1:10, function(ii){
  ii + a # sub-process don't know a, hence must pass a as globals
}, .globals = list(a = a))

# non-blocking case
system.time({
  check <- async_works(1:10, function(ii){
    # simulating process, run run run
    Sys.sleep(ii)
    Sys.getpid()
  }, .wait = FALSE)
})

# check the results
res <- check(timeout = 0.1)
attr(res, 'resolved') # whether it's resolved

# block the session waiting for the results
res <- check(timeout = Inf)
attr(res, 'resolved')



## End(Not run)

Get attached package names in current session (Internally used)

Description

Get attached package names in current session (Internally used)

Usage

attached_packages(include_base = FALSE)

Arguments

include_base

whether to include base packages

Value

characters, package names that are attached in current session


Save "Base64" Data to Images

Description

Save "Base64" Data to Images

Usage

base64_to_image(data, path)

Arguments

data

characters, encoded "Base64" data for images

path

file path to save to

Value

Absolute path of the saved file


Convert "Base64" Data to String

Description

Decode "Base64" data to its generating characters

Usage

base64_to_string(what)

Arguments

what

characters, encoded "Base64" data

Value

String

Examples

input <- "The quick brown fox jumps over the lazy dog"

# Base64 encode
what <- base64enc::base64encode(what = charToRaw(input))

# Base64 decode
base64_to_string(what)

Encode or decode 'base64'

Description

Compatible with results from package 'base64url', but implemented with package 'base64enc'. I simply do not like it when I have to depend on two packages that can achieve the same goal. This implementation is slower. If you have 'base64url' installed, please use that version.

Usage

base64_urlencode(x)

base64_urldecode(x)

Arguments

x

character vector to encode or decode

Value

character vector of the same length as x

Examples

x = "plain text"
encoded = base64_urlencode(x)
decoded = base64_urldecode(encoded)
print(encoded)
print(decoded)

Calculate Contrasts of Arrays in Different Methods

Description

Provides five methods to baseline an array and calculate contrast.

Usage

baseline_array(
  x,
  along_dim,
  baseline_indexpoints,
  unit_dims = seq_along(dim(x))[-along_dim],
  method = c("percentage", "sqrt_percentage", "decibel", "zscore", "sqrt_zscore",
    "subtract_mean")
)

Arguments

x

array (tensor) to calculate contrast

along_dim

integer range from 1 to the maximum dimension of x. baseline along this dimension, this is usually the time dimension.

baseline_indexpoints

integer vector, which index points are counted into baseline window? Each index ranges from 1 to dim(x)[[along_dim]]. See Details.

unit_dims

integer vector, baseline unit: see Details.

method

character, baseline method options are: "percentage", "sqrt_percentage", "decibel", "zscore", and "sqrt_zscore"

Details

Consider a scenario where we want to baseline a bunch of signals recorded from different locations. For each location, we record n sessions. For each session, the signal is further decomposed into frequency-time domain. In this case, we have the input x in the following form:

sessionxfrequencyxtimexlocationsession x frequency x time x location

Now we want to calibrate signals for each session, frequency and location using the first 100 time points as baseline points, then the code will be

baselinearray(x,alongdim=3,1:100,unitdims=c(1,2,4))baseline_array(x, along_dim=3, 1:100, unit_dims=c(1,2,4))

along_dim=3 is dimension of time, in this case, it's the third dimension of x. baseline_indexpoints=1:100, meaning the first 100 time points are used to calculate baseline. unit_dims defines the unit signal. Its value c(1,2,4) means the unit signal is per session (first dimension), per frequency (second) and per location (fourth).

In some other cases, we might want to calculate baseline across frequencies then the unit signal is frequencyxtimefrequency x time, i.e. signals that share the same session and location also share the same baseline. In this case, we assign unit_dims=c(1,4).

There are five baseline methods. They fit for different types of data. Denote zz is an unit signal, z0z_0 is its baseline slice. Then these baseline methods are:

"percentage"

zz0ˉz0ˉ×100%\frac{z - \bar{z_{0}}}{\bar{z_{0}}} \times 100\%

"sqrt_percentage"

zz0ˉz0ˉ×100%\frac{\sqrt{z} - \bar{\sqrt{z_{0}}}}{\bar{\sqrt{z_{0}}}} \times 100\%

"decibel"

10×(log10(z)log10(z0)ˉ)10 \times ( \log_{10}(z) - \bar{\log_{10}(z_{0})} )

"zscore"

zz0ˉsd(z0)\frac{z-\bar{z_{0}}}{sd(z_{0})}

"sqrt_zscore"

zz0ˉsd(z0)\frac{\sqrt{z}-\bar{\sqrt{z_{0}}}}{sd(\sqrt{z_{0}})}

Value

Contrast array with the same dimension as x.

Examples

library(dipsaus)
set.seed(1)

# Generate sample data
dims = c(10,20,30,2)
x = array(rnorm(prod(dims))^2, dims)

# Set baseline window to be arbitrary 10 timepoints
baseline_window = sample(30, 10)

# ----- baseline percentage change ------

# Using base functions
re1 <- aperm(apply(x, c(1,2,4), function(y){
  m <- mean(y[baseline_window])
  (y/m - 1) * 100
}), c(2,3,1,4))

# Using dipsaus
re2 <- baseline_array(x, 3, baseline_window, c(1,2,4),
                      method = 'percentage')

# Check different, should be very tiny (double precisions)
range(re2 - re1)

# Check speed for large dataset
if(interactive()){
  dims = c(200,20,300,2)
  x = array(rnorm(prod(dims))^2, dims)
  # Set baseline window to be arbitrary 10 timepoints
  baseline_window = seq_len(100)
  f1 <- function(){
    aperm(apply(x, c(1,2,4), function(y){
      m <- mean(y[baseline_window])
      (y/m - 1) * 100
    }), c(2,3,1,4))
  }
  f2 <- function(){
    # equivalent as bl = x[,,baseline_window, ]
    #
    baseline_array(x, along_dim = 3,
                   baseline_indexpoints = baseline_window,
                   unit_dims = c(1,2,4), method = 'sqrt_percentage')
  }
  microbenchmark::microbenchmark(f1(), f2(), times = 3L)
}

Captures Evaluation Output of Expressions as One Single String

Description

Evaluate expression and captures output as characters, then concatenate as one single string.

Usage

capture_expr(expr, collapse = "\n", type = c("output", "message"), ...)

Arguments

expr

R expression

collapse

character to concatenate outputs

type, ...

passed to capture.output

Value

Character of length 1: output captured by capture.output

Examples

x <- data.frame(a=1:10)
x_str <- capture_expr({
  print(x)
})

x_str

cat(x_str)

Color Output

Description

Color Output

Usage

cat2(
  ...,
  level = "DEBUG",
  print_level = FALSE,
  file = "",
  sep = " ",
  fill = FALSE,
  labels = NULL,
  append = FALSE,
  end = "\n",
  pal = list(DEBUG = "grey60", INFO = "#1d9f34", WARNING = "#ec942c", ERROR = "#f02c2c",
    FATAL = "#763053", DEFAULT = "grey60"),
  use_cli = TRUE,
  bullet = "auto"
)

Arguments

...

to be printed

level

'DEBUG', 'INFO', 'WARNING', 'ERROR', or 'FATAL' (total 5 levels)

print_level

if true, prepend levels before messages

file, sep, fill, labels, append

pass to base::cat

end

character to append to the string

pal

a named list defining colors see details

use_cli

logical, whether to use package 'cli'

bullet

character, if use 'cli', which symbol to show. see symbol

Details

There are five levels of colors by default: 'DEBUG', 'INFO', 'WARNING', 'ERROR', or FATAL. Default colors are: 'DEBUG' (grey60), 'INFO' (#1d9f34), 'WARNING' (#ec942c), 'ERROR' (#f02c2c), 'FATAL' (#763053) and 'DEFAULT' (#000000, black). If level is not in preset five levels, the color will be "default"-black color.

Value

none.


Check If Packages Are Installed, Returns Missing Packages

Description

Check If Packages Are Installed, Returns Missing Packages

Usage

check_installed_packages(
  pkgs,
  libs = base::.libPaths(),
  auto_install = FALSE,
  ...
)

Arguments

pkgs

vector of packages to install

libs

paths of libraries

auto_install

automatically install packages if missing

...

other parameters for install.packages

Value

package names that are not installed


Function to clear all elements within environment

Description

Function to clear all elements within environment

Usage

clear_env(env, ...)

Arguments

env

environment to clean, can be an R environment, or a fastmap2 instance

...

ignored

Examples

env = new.env()
env$a = 1
print(as.list(env))

clear_env(env)
print(as.list(env))

Convert color to Hex string

Description

Convert color to Hex string

Usage

col2hexStr(col, alpha = NULL, prefix = "#", ...)

Arguments

col

character or integer indicating color

alpha

NULL or numeric, transparency. See grDevices::rgb

prefix

character, default is "#"

...

passing to adjustcolor

Details

col2hexStr converts colors such as 1, 2, 3, "red", "blue", ... into hex strings that can be easily recognized by 'HTML', 'CSS' and 'JavaScript'. Internally this function uses adjustcolor with two differences:

  1. the returned hex string does not contain alpha value if alpha is NULL;

  2. the leading prefix "#" can be customized

Value

characters containing the hex value of each color. See details

See Also

adjustcolor

Examples

col2hexStr(1, prefix = '0x')      # "0x000000"
col2hexStr('blue')                # "#0000FF"

# Change default palette, see "grDevices::colors()"
grDevices::palette(c('orange3', 'skyblue1'))
col2hexStr(1)                     # Instead of #000000, #CD8500

Collapse Sensors And Calculate Summations/Mean

Description

Collapse Sensors And Calculate Summations/Mean

Usage

collapse(x, keep, average = FALSE)

Arguments

x

A numeric multi-mode tensor (array), without NA

keep

Which dimension to keep

average

collapse to sum or mean

Value

a collapsed array with values to be mean or summation along collapsing dimensions

Examples

# Example 1
x = matrix(1:16, 4)

# Keep the first dimension and calculate sums along the rest
collapse(x, keep = 1)
rowSums(x)  # Should yield the same result

# Example 2
x = array(1:120, dim = c(2,3,4,5))
result = collapse(x, keep = c(3,2))
compare = apply(x, c(3,2), sum)
sum(abs(result - compare)) # The same, yield 0 or very small number (1e-10)

# Example 3 (performance)
# Small data, no big difference, even slower
x = array(rnorm(240), dim = c(4,5,6,2))
microbenchmark::microbenchmark(
  result = collapse(x, keep = c(3,2)),
  compare = apply(x, c(3,2), sum),
  times = 1L, check = function(v){
    max(abs(range(do.call('-', v)))) < 1e-10
  }
)

# large data big difference
x = array(rnorm(prod(300,200,105)), c(300,200,105,1))
microbenchmark::microbenchmark(
  result = collapse(x, keep = c(3,2)),
  compare = apply(x, c(3,2), sum),
  times = 1L , check = function(v){
    max(abs(range(do.call('-', v)))) < 1e-10
  })

Compound input that combines and extends shiny inputs

Description

Compound input that combines and extends shiny inputs

Usage

compoundInput2(
  inputId,
  label = "Group",
  components = shiny::tagList(),
  initial_ncomp = 1,
  min_ncomp = 0,
  max_ncomp = 10,
  value = NULL,
  label_color = NA,
  max_height = NULL,
  ...
)

Arguments

inputId

character, shiny input ID

label

character, will show on each groups

components

'HTML' tags that defines and combines HTML components within groups

initial_ncomp

numeric initial number of groups to show, non-negative

min_ncomp

minimum number of groups, default is 0, non-negative

max_ncomp

maximum number of groups, default is 10, greater or equal than min_ncomp

value

list of lists, initial values of each inputs, see examples.

label_color

integer or characters, length of 1 or max_ncomp, assigning colors to each group labels; default is NA, and try to get color from foreground par("fg")

max_height

maximum height of the widget

...

will be ignored

Value

'HTML' tags

See Also

updateCompoundInput2 for how to update inputs

Examples

library(shiny); library(dipsaus)
compoundInput2(
  'input_id', 'Group',
    div(
    textInput('text', 'Text Label'),
    sliderInput('sli', 'Slider Selector', value = 0, min = 1, max = 1)
  ),
  label_color = 1:10,
  value = list(
    list(text = '1'),  # Set text first group to be "1"
    list(),                # no settings for second group
    list(sli = 0.2)    # sli = 0.2 for the third group
  ))

# Source - system.file('demo/example-compountInput2.R', package='dipsaus')

# demo('example-compountInput2', package='dipsaus')

library(shiny)
library(dipsaus)
ui <- fluidPage(
  fluidRow(
    column(
      width = 4,
      compoundInput2(
        'compound', 'Group Label', label_color = c(NA,1:9),
        components = div(
          textInput('txt', 'Text'),
          selectInput('sel', 'Select', choices = 1:10, multiple = TRUE),
          sliderInput('sli', 'Slider', max=1, min=0, val=0.5)
        ),
        value = list(
          list(txt = '1'),  # Set text first group to be "1"
          '',                # no settings for second group
          list(sli = 0.2)    # sli = 0.2 for the third group
        )
      ),
      hr(),
      actionButton('action', 'Update compound input')
    )
  )
)

server <- function(input, output, session) {
  observe({
    print(input$compound)
  })
  observe({
    # Getting specific input at group 1
    print(input$compound_txt_1)
  })
  observeEvent(input$action, {
    updateCompoundInput2(
      session, 'compound',
      # Update values for each components
      value = lapply(1:5, function(ii){
        list(
          txt = sample(LETTERS, 1),
          sel = sample(1:10, 3),
          sli = runif(1)
        )
      }), ncomp = NULL, txt = list(label = as.character(Sys.time())))
  })
}

if( interactive() ){
  shinyApp(ui, server, options = list(launch.browser = TRUE))
}

Python-style decorator

Description

Python-style decorator

Usage

decorate_function(orig, decor, ...)

lhs %D% rhs

Arguments

orig, lhs

any function

decor, rhs

decorator function that takes orig as its first argument

...

passed to decor

Examples

# Example 1: basic usage
# Decorator that prints summary of results and return results itself
verbose_summary <- function(...){
  summary_args <- list(...)
  function(f){
    function(...){
      results <- f(...)


      print(do.call(
        summary,
        c(list(results), summary_args)
      ))
      results

    }
  }

}

# runs as.list, but through verbose_summary
as_list2 <- decorate_function(as.list, verbose_summary)

# run test
res <- as_list2(1:3)  # will verbose summary
identical(res, as.list(1:3))

# Example 2
x <- 1:20
y <- x + rnorm(20)

# decorator, add a line with slope 1 with given intercept
abline_xy <- function(b){
  function(f){
    function(...){
      f(...)
      intercept <- get_dots('intercept', 0, ...)
      abline(a = intercept, b = b)
    }
  }
}

# orig, plot whatever x vs jittered+intercept
plot_xy <- function(x, intercept = rnorm(1)){
  plot(x, jitter(x, amount = 3) + intercept)
}

# new function that decorate plot_xy with abline_xy, and
# returns the intercept
plot_xy2 <- decorate_function(plot_xy, abline_xy, b = 1)

# alternatively, you might also want to try
plot_xy2 <- plot_xy %D% abline_xy(b = 1)

plot_xy2(x = 1:20)

Convert Integer Vectors To String

Description

Convert Integer Vectors To String

Usage

deparse_svec(
  nums,
  connect = "-",
  concatenate = TRUE,
  collapse = ",",
  max_lag = 1
)

Arguments

nums

integer vector

connect

character used to connect consecutive numbers

concatenate

connect strings if there are multiples

collapse

if concatenate, character used to connect strings

max_lag

defines "consecutive", min = 1

Value

strings representing the input vector. For example, c(1, 2, 3) returns "1-3".

See Also

parse_svec

Examples

deparse_svec(c(1:10, 15:18))

Digest R object with source reference removed

Description

Digest R object with source reference removed

Usage

digest2(object, ..., keep_source = FALSE)

Arguments

object, ...

passed to digest

keep_source

whether to keep the code that generates the object; default is false

See Also

removeSource


Register customized R code to 'RStudio' shortcuts

Description

'RStudio' keyboard shortcuts is handy, however, it is non-trivial to set shortcuts that run customized code. The proposing functions allow 10 customized R expressions to be registered. The first five (1 to 5) are interactive shortcuts, the rest five (6 to 10) are non-interactive.

Usage

rs_add_insertion_shortcut(which, txt, force = FALSE)

rs_add_shortcut(which, expr, force = FALSE, quoted = FALSE)

rs_remove_shortcut(which)

rs_show_shortcut(which)

rs_quick_debug(env = globalenv())

Arguments

which

integer from 1 to 10, which keyboard shortcut to edit

txt

an insertion/replacement shortcut to add

force

whether to remove existing shortcut if the hot-key has been registered

expr

expression to run if shortcut is pressed

quoted

whether expr is quoted, default is false

env

environment to debug code; default is global environment

Details

There are two steps to register an 'RStudio' keyboard shortcut.

1. Please enable the shortcuts by opening 'Tools' > 'Modify Keyboard Shortcuts' in 'RStudio' menu bar; search and locate add-in items starting with 'Dipsaus'; register hot-keys of your choices, and then save. It is recommended that these keys are 'Alt' + 1 to 'Alt' + 0. On Apple, 'Alt' is equivalent to 'option' key.

2. run rs_add_insertion_shortcut or rs_add_shortcut to customize the behaviors of each shortcuts; see Examples.

Function rs_quick_debug provides quick way to debug a script or function without messing up the code. The script only works in 'RStudio'. When executing the quick-debug function, the cursor context will be automatically resolved and nearest debugging code blocks will be searched and executed. To enable this feature, add a line with "# DIPSAUS: DEBUG START" in your code, followed by debugging code blocks in comments. The script will figure it out. Since the 'RStudio' context will be obtained when executing the function, it is recommended to add this function to your shortcuts. By default, if the shortcut-1 is unset, this function will be executed.

Examples

## Not run: 

# Need to run in RStudio
# Please read the Section 'Details' carefully

# --------------------------------------------

# I assume the shortcuts are Alt+1,2,...,9,0,
# corresponding to shortcuts 1 - 10

# Adds an insertion to Alt+9
rs_add_insertion_shortcut(9, " %?<-% ", force = TRUE)
# restart RStudio and try `Alt+9`


# Adds an expression to Alt+2
rs_add_shortcut(2, {
  expr <- sprintf("system.time({\n%s\n})\n",
                  rstudioapi::selectionGet()$value)
  cat(expr)
  eval(parse(text = expr))
}, force = TRUE)

# Select any valid R code and press Alt+1

# --------------------------------------------

# run this to set your shortcut (one-time setup)
rs_add_shortcut(1, { dipsaus::rs_quick_debug() })

# Add debug feature: insert the following comment anywhere in your code
# You may open a new script in the RStudio

# DIPSAUS: DEBUG START
# message("Debugging...")
# a <- 1
# print(a)
# message("Finished")


# Place your cursor here, press the shortcut key


## End(Not run)

Make aggregate pipe-friendly

Description

A pipe-friendly wrapper of aggregate when using formula as input.

Usage

do_aggregate(x, ...)

Arguments

x

an R object

...

other parameters passed to aggregate

Value

Results from aggregate

See Also

aggregate

Examples

library(magrittr)
data(ToothGrowth)

ToothGrowth %>%
  do_aggregate(len ~ ., mean)

A dummy function that literally does nothing

Description

A dummy function that literally does nothing

Usage

do_nothing(...)

Arguments

...

ignored

Value

Nothing


Drop NULL values from list or vectors

Description

Drop NULL values from list or vectors

Usage

drop_nulls(x, .invalids = list("is.null"))

Arguments

x

list to check

.invalids

a list of functions, or function name. Default is 'is.null'.

Value

list or vector containing no invalid values

Examples

x <- list(NULL,NULL,1,2)
drop_nulls(x)  # length of 2

Evaluate expressions

Description

Evaluate expressions

Usage

eval_dirty(expr, env = parent.frame(), data = NULL, quoted = TRUE)

Arguments

expr

R expression or 'rlang' quo

env

environment to evaluate

data

dataframe or list

quoted

Is the expression quoted? By default, this is TRUE. This is useful when you don't want to use an expression that is stored in a variable; see examples

Details

eval_dirty uses base::eval() function to evaluate expressions. Compare to rlang::eval_tidy, which won't affect original environment, eval_dirty causes changes to the environment. Therefore if expr contains assignment, environment will be changed in this case.

Value

the executed results of expr evaluated with side effects.

Examples

env = new.env(); env$a = 1
rlang::eval_tidy(quote({a <- 111}), env = env)
print(env$a)  # Will be 1. This is because eval_tidy has no side effect

eval_dirty(quote({a <- 111}), env)
print(env$a)  # 111, a is changed

# Unquoted case
eval_dirty({a <- 222}, env, quoted = FALSE)
print(env$a)

Shiny drag-and-drop file input

Description

Fancy drag and drop file upload for shiny apps.

Usage

fancyFileInput(
  inputId,
  label,
  width = NULL,
  after_content = "Drag & drop, or button",
  size = c("s", "m", "l", "xl"),
  ...
)

Arguments

inputId

the input slot that will be used to access the value

label

display label for the control, or NULL for no label.

width

the width of the input

after_content

tiny content that is to be displayed below the input box

size

height of the widget, choices are 's', 'm', 'l', and 'xl'

...

passed to fileInput

Value

See fileInput

Examples

library(shiny)
library(dipsaus)

ui <- basicPage(
  fancyFileInput('file_input', "Please upload")
)

if(interactive()) {
  shinyApp(
    ui, server = function(input, output, session){},
    options = list(launch.browser = TRUE)
  )
}

Calculate Covariance Matrix in Parallel

Description

Speed up covariance calculation for large matrices. The default behavior is similar cov. Please remove any NA prior to calculation.

Usage

fastcov2(x, y = NULL, col1, col2, df)

Arguments

x

a numeric vector, matrix or data frame; a matrix is highly recommended to maximize the performance

y

NULL (default) or a vector, matrix or data frame with compatible dimensions to x; the default is equivalent to y = x

col1

integers indicating the subset (columns) of x to calculate the covariance; default is all the columns

col2

integers indicating the subset (columns) of y to calculate the covariance; default is all the columns

df

a scalar indicating the degrees of freedom; default is nrow(x)-1

Value

A covariance matrix of x and y. Note that there is no NA handling. Any missing values will lead to NA in the resulting covariance matrices.

Examples

x <- matrix(rnorm(400), nrow = 100)

# Call `cov(x)` to compare
fastcov2(x)

# Calculate covariance of subsets
fastcov2(x, col1 = 1, col2 = 1:2)

# Speed comparison
x <- matrix(rnorm(100000), nrow = 1000)
microbenchmark::microbenchmark(
  fastcov2 = {
    fastcov2(x, col1 = 1:50, col2 = 51:100)
  },
  cov = {
    cov(x[,1:50], x[,51:100])
  },
  unit = 'ms', times = 10
)

A Wrapper for fastmap::fastmap

Description

fastmap provides a key-value store where the keys are strings and the values are any R objects. It differs from normal environment that fastmap avoids memory leak. fastmap2 is a wrapper for fastmap, which provides several generic functions such that it has similar behaviors to lists or environments

Usage

fastmap2(missing_default = NULL)

## S3 method for class 'fastmap2'
x[[name]]

## S3 method for class 'fastmap2'
x$name

## S3 replacement method for class 'fastmap2'
x[[name]] <- value

## S3 replacement method for class 'fastmap2'
x$name <- value

## S3 method for class 'fastmap2'
x[i, j = NULL, ...]

## S3 replacement method for class 'fastmap2'
x[i, j = NULL, ...] <- value

## S3 method for class 'fastmap2'
names(x)

## S3 method for class 'fastmap2'
print(x, ...)

## S3 method for class 'fastmap2'
length(x)

## S3 method for class 'fastmap2'
as.list(x, recursive = FALSE, sorted = FALSE, ...)

Arguments

missing_default

passed to fastmap::fastmap

x

a 'fastmap2' object

name

name, or key of the value

value

any R object

i, j

vector of names

...

passed to other methods

recursive

whether to recursively apply as.list

sorted

whether to sort names; default is false

Value

A list of 'fastmap2' instance

Examples

## --------------------------- Basic Usage --------------------------
map <- fastmap2()
map$a = 1
map$b = 2
print(map)

map[c('a', 'b')]
# Alternative way
map['a', 'b']

map[c('c', 'd')] <- 3:4
# or
map['e', 'f'] <- 5:6

# The order is not guaranteed, unless sort=TRUE
as.list(map)
as.list(map, sort=TRUE)

names(map)
length(map)

## ----------------------- NULL value handles -----------------------
map$b <- NULL
names(map)   # 'b' still exists!
as.list(map) # 'b' is NULL, but still there

# to remove 'b', you have to use `@remove` method
map$`@remove`('b')

## ---------------- Native fastmap::fastmap methods -----------------

# whether map has 'a'
map$`@has`('a')

# Remove a name from list
map$`@remove`('a')

# remove all from list
map$`@reset`()
print(map)

Calculate single quantile for numerical values

Description

Slightly faster than quantile with na.rm=TRUE. The internal implementation uses the 'C++' function std::nth_element, which is significantly faster than base R implementation when the length of input x is less than 1e7.

Usage

fastquantile(x, q)

Arguments

x

numerical vector (integers or double)

q

number from 0 to 1

Value

Identical to quantile(x, q, na.rm=TRUE)

Examples

# create input x with NAs
x <- rnorm(10000)
x[sample(10000, 10)] <- NA

# compute median
res <- fastquantile(x, 0.5)
res

# base method
res == quantile(x, 0.5, na.rm = TRUE)
res == median(x, na.rm = TRUE)

# Comparison
microbenchmark::microbenchmark(
  {
    fastquantile(x, 0.5)
  },{
    quantile(x, 0.5, na.rm = TRUE)
  },{
    median(x, na.rm = TRUE)
  }
)

A Wrapper for fastmap::fastqueue

Description

A Wrapper for fastmap::fastqueue

Usage

fastqueue2(init = 20L, missing_default = NULL)

## S3 method for class 'fastqueue2'
x[[i]]

## S3 method for class 'fastqueue2'
x[i, j = NULL, ...]

## S3 method for class 'fastqueue2'
print(x, ...)

## S3 method for class 'fastqueue2'
length(x)

## S3 method for class 'fastqueue2'
as.list(x, ...)

Arguments

init, missing_default

passed to fastmap::fastqueue

x

a 'fastqueue2' object

i, j

integer index

...

integer indices or passed to other methods

Value

A list of 'fastqueue2' instance

Examples

x <- fastqueue2()

# add elements
x$madd(1, "b", function(){ "c" }, 4, "5")

# print information
print(x)

# get the second element without changing the queue
x[[2]]

# remove and get the first element
x$remove()

# the second item
x[[2]]

# first two items in a list
x[c(1,2)]

print(x)
as.list(x)

Generate Shiny element with arrangement automatically

Description

Generate Shiny element with arrangement automatically

Usage

flex_div(..., ncols = "auto")

Arguments

...

shiny UI elements

ncols

number of columns, either "auto" or vector of positive integers

Details

If multiple numbers of columns are specified, flex_div will guess the best size that will be applied. For button UI, flex_div automatically add "20px" on the top margin.

Value

HTML objects

Examples

ui <- flex_div(
  shiny::selectInput('sel', label = 'Select input',
                     choices = '', width = '100%'),
  shiny::textInput('id2', label = html_asis(' '), width = '100%',
                   value = 'Heights aligned'),
  actionButtonStyled('ok2', 'Button', width = '100%',),
  shiny::sliderInput('sl', 'Item 4', min = 1, max = 2,
                     value = 1.5, width = '100%'),
  shiny::fileInput('aa', 'item 5', width = '100%'),
  ncols = c(2,3) # Try to assign 2 or 3 items per column
)
if(interactive()){
  shiny::shinyApp(ui = shiny::fluidPage(shiny::fluidRow(ui)),
                  server = function(input, output, session){})
}

Python-style "for-else" function

Description

Provide Python-style "for-else" that works as follows: for each element, execute "for" block, if there is break while executing "for" block, then just stop and ignore the "else" statement, otherwise run "else" block.

Usage

forelse(x, FUN, ALT_FUN = NULL)

Arguments

x

iterative R objects such as list, vector, etc.

FUN

function that applies to each x

ALT_FUN

function that takes no argument or other types of R object

Value

If any FUN returns anything other than NULL, then the function returns the first none NULL object. If all x fed to FUN return NULL, then this function returns ALT_FUN (if ALT_FUN is not a function) or the result of ALT_FUN().

Examples

# --------------------------- Basic Usage ------------------------------

# 1. ALT_FUN get executed because FUN returns NULL for all items in x
forelse(
  1:10,
  function(x){
    cat('The input is ', x, end = '\n')
    if( x > 10) return(x) else return(NULL)
  },
  function(){
    cat('ALT_FUN is executed!\n')
    'wow'
  }
)

# 2. FUN returns non-NULL object
forelse(
  1:10,
  function(x){
    cat('The input is ', x, end = '\n')
    if( x %% 2 == 0 ) return(x) else return(NULL)
  },
  'wow'
)

# --------------------------- Performance ------------------------------
FUN <- function(x){
  Sys.sleep(0.01)
  if( x %% 2 == 0 ) return(x) else return(NULL)
}

microbenchmark::microbenchmark({
  forelse(1:10, FUN, 'wow')
}, {
  y <- unlist(lapply(1:10, FUN))
  if(length(y)){
    y <- y[[1]]
  }else{
    y <- 'wow'
  }
}, {
  y <- NULL
  for(x in 1:10){ y <- FUN(x) }
  if(is.null(y)){ y <- 'wow' }
}, times = 3)

Defunct Functions in Package dipsaus The functions or variables listed here are no longer part of the package.

Description

Defunct Functions in Package dipsaus The functions or variables listed here are no longer part of the package.

Usage

get_cpu()

Generate a random password

Description

Please note that this function is not meant to be used in production. It is not meant to be used for highly secured cryptographic purposes.

Usage

get_credential(
  master_password,
  method = c("get_or_create", "replace", "query"),
  service = NULL,
  special_chr = "~`! @#$%^&*()_-+={[}]|:;'<,>.?/",
  tokenfile = NULL,
  verbose = FALSE
)

Arguments

master_password

a master password that only you know, should have at least 8 characters

method

whether to query token map, or to create the password, choices are 'get_or_create' (default), 'replace', 'query'; see 'Details'

service

service name, must only contains letters, digits, equal sign, underscore, comma, dot, dash

special_chr

special characters allowed in the password

tokenfile

a file containing all the tokens. Warning: if you lose the token book, it is hard (not impossible, but impractical) to restore the passwords

verbose

whether to print out service names; default is false

Details

Please note that this function is not meant to be used in production or anything that requires high security level. This is most likely for my personal use since I am tired of storing the passwords on the cloud or having to buy the services.

The encryption adopts 'sha256' algorithm provided by digest function. To restore a password, you will need twp components: master_password, a token book ( tokenfile). If any of them is missing, then the password is lost. Please store the token book properly (for example, in 'Dropbox' vault).

The token book could be shared. Anyone who do not have master password will be unlikely to restore the service password. Do not share the master password with anyone other than yourself.

By default, method='get_or_create' will try to retrieve existing tokens to generate password. If the token is missing, then a new token will be generated. The method='replace' will ignore existing tokens and directly create a new one.

Value

If method is 'query', returns token map; otherwise returns the password itself

See Also

digest

Examples

tokenfile <- tempfile()

# ---------- Create a password and store the tokens to token book ------
pass1 <- get_credential(
  master_password = "my password",
  service = "google.com:my_username",
  special_chr = "@#$%^&*",
  tokenfile = tokenfile
)
print(pass1)

# ---------- Query existing tokens ------
token_params <- get_credential(
  method = "query",
  tokenfile = tokenfile,
  verbose = TRUE
)

print(token_params)

# ---------- retrieve stored password ----------
pass2 <- get_credential(
  master_password = "my password",
  service = "google.com",
  tokenfile = tokenfile
)
identical(pass1, pass2)

# Using wrong master password
pass3 <- get_credential(
  master_password = "wrong password",
  service = "google.com",
  tokenfile = tokenfile
)
identical(pass1, pass3)

# ---------- Replace token ----------
# Existing token will be replaced with a new token
pass4 <- get_credential(
  master_password = "my password",
  method = "replace",
  service = "google.com",
  special_chr = "@#$%^&*",
  tokenfile = tokenfile
)
print(pass4)
identical(pass1, pass4)

Get or check elements from dots '...'

Description

Get information from '...' without evaluating the arguments.

Usage

get_dots(..name, ..default = NULL, ...)

missing_dots(envir = parent.frame())

Arguments

..name

character name of the argument

..default

R object to return if argument not found

...

dots that contains argument

envir

R environment

Value

missing_dots returns logical vector with lengths matching with dot lengths. get_dots returns value corresponding to the name.

Examples

# ------------------------ Basic Usage ---------------------------

# missing_dots(environment()) is a fixed usage

my_function <- function(...){
  missing_dots(environment())
}
my_function(,)

# get_dots
plot2 <- function(...){
  title = get_dots('main', 'There is no title', ...)
  plot(...)
  title
}

plot2(1:10)
plot2(1:10, main = 'Scatter Plot of 1:10')

# ------------------------ Comparisons ----------------------------
f1 <- function(...){ get_dots('x', ...) }
f2 <- function(...){ list(...)[['x']] }
delayedAssign('y', { cat('y is evaluated!') })

# y will not evaluate
f1(x = 1, y = y)

# y gets evaluated
f2(x = 1, y = y)

# -------------------- Decorator example --------------------------
ret_range <- function(which_range = 'y'){
  function(f){
    function(...){
      f(...)
      y_range <- range(get_dots(which_range, 0, ...))
      y_range
    }
  }
}
plot_ret_yrange <- plot %D% ret_range('y')
plot_ret_yrange(x = 1:10, y = rnorm(10))

Get 'IP' address

Description

Get 'IP' address

Usage

get_ip(get_public = NA)

Arguments

get_public

whether to get public 'IP'

Value

a list of 'IP' addresses


Detect the type of operating system

Description

Detect the type of operating system

Usage

get_os()

Value

The type of current operating system: 'windows', 'darwin', 'linux', 'solaris', or otherwise 'unknown'.

Examples

get_os()

Get Memory Size

Description

Get Memory Size

Usage

get_ram()

Details

The function get_ram only supports 'MacOS', 'Windows', and 'Linux'. 'Solaris' or other platforms will return NA. Here are the system commands used to detect memory limits:

'Windows'

Uses command 'wmic.exe' in the 'Windows' system folder. Notice this command-line tool might not exist on all 'Windows' machines. get_ram will return NA if it cannot locate the command-line tool.

'MacOS'

Uses command 'sysctl' located at '/usr/sbin/' or '/sbin/'. Alternatively, you can edit the environment variable 'PATH' to include the command-line tools if 'sysctl' is missing. get_ram will return NA if it cannot locate 'sysctl'.

'Linux'

Uses the file '/proc/meminfo', possibly the first entry 'MemTotal'. If the file is missing or entry 'MemTotal' cannot be located, get_ram will return NA.

Value

System RAM in bytes, or NA if not supported.

Examples

get_ram()

Obtain registered input bindings

Description

Obtain registered input bindings

Usage

getInputBinding(fname, pkg = NULL, envir = parent.frame())

Arguments

fname

input function name, character or quoted expression such as 'shiny::textInput' or numericInput.

pkg

(optional), name of package

envir

environment to evaluate fname if pkg is not provided

Value

a list containing: 1. 'JavaScript' input binding name; 2. 'R' updating function name

Examples

library(dipsaus)

# Most recommended usage
getInputBinding('compoundInput2', pkg = 'dipsaus')

# Other usages
getInputBinding('shiny::textInput')


getInputBinding(shiny::textInput)

getInputBinding(compoundInput2, pkg = 'dipsaus')

# Bad usage, raise errors in some cases
## Not run: 
## You need to library(shiny), or set envir=asNamespace('shiny'), or pkg='shiny'
getInputBinding('textInput')
getInputBinding(textInput) # also fails

## Always fails
getInputBinding('dipsaus::compoundInput2', pkg = 'dipsaus')

## End(Not run)

Create a group of named graphic devices

Description

Create a group of named graphic devices

Usage

dev_create(..., env = parent.frame(), attributes = list())

get_dev_attr(which, dev = grDevices::dev.cur(), ifnotfound = NULL)

Arguments

...

named expressions to launch devices

env

environment to evaluate expressions

attributes

named list; names correspond to device names and values are attributes to set to the devices

which

which attribute to obtain

dev

which device to search for attributes

ifnotfound

value to return if attribute is not found

Value

A list of functions to query, control, and switch between devices

Examples

## Not run:  ## Unix-specific example

# Create multiple named devices, setting attributes to the second graph
devs <- dev_create(
  line = X11(), points = x11(),
  attributes = list(points = list(pch = 16))
)

# switch to device named "points"

devs$dev_which('points')

# Plot points, with pch given as preset
plot(1:10, pch = get_dev_attr(which = 'pch', ifnotfound = 1))

# switch to "line" device
devs$dev_switch('line')
plot(1:100, type='l')

# Create another group with conflict name
dev_another <- dev_create(line = X11())

# Query device name with 'line'
dev_another$dev_which('line')  # 4
devs$dev_which('line')  # 2, doesn't conflict with the new groups

dev.list()
# close one or more device
dev_another$dev_off('line')
dev.list()

# close all devices
devs$dev_off()
dev.list()


## End(Not run)

Progress-bar Handler

Description

Handler for progress2 to support progressr::handlers. See examples for detailed use case

Usage

handler_dipsaus_progress(
  title = getOption("dipsaus.progressr.title", "Progress"),
  intrusiveness = getOption("progressr.intrusiveness.gui", 1),
  target = if (is.null(shiny::getDefaultReactiveDomain())) "terminal" else "gui",
  enable = interactive() || shiny_is_running(),
  ...
)

Arguments

title

default title of progress2

intrusiveness

A non-negative scalar on how intrusive (disruptive) the reporter to the user

target

where progression updates are rendered

enable

whether the progress should be reported

...

passed to make_progression_handler

Examples

library(progressr)
library(shiny)
library(future)

## ------------------------------ Setup! -------------------------------
handlers(handler_dipsaus_progress())

# ------------------------------ A simple usage ------------------------
xs <- 1:5
handlers(handler_dipsaus_progress())
with_progress({
  p <- progressor(along = xs)
  y <- lapply(xs, function(x) {
    p(sprintf("x=%g", x))
    Sys.sleep(0.1)
    sqrt(x)
  })
})

# ------------------------ A future.apply case -------------------------
plan(sequential)
# test it yourself with plan(multisession)

handlers(handler_dipsaus_progress())
with_progress({
  p <- progressor(along = xs)
  y <- future.apply::future_lapply(xs, function(x) {
    p(sprintf("x=%g", x))
    Sys.sleep(0.1)
    sqrt(x)
  })
})

# ------------------------ A shiny case --------------------------------

ui <- fluidPage(
  actionButton('ok', 'Run Demo')
)

server <- function(input, output, session) {
  handlers(handler_dipsaus_progress())
  make_forked_clusters()

  observeEvent(input$ok, {
    with_progress({
      p <- progressor(along = 1:100)
      y <- future.apply::future_lapply(1:100, function(x) {
        p(sprintf("Input %d|Result %d", x, x+1))
        Sys.sleep(1)
        x+1
      })
    })
  })
}

if(interactive()){
  shinyApp(ui, server)
}

Escape HTML strings

Description

Escape HTML strings so that they will be displayed 'as-is' in websites.

Usage

html_asis(s, space = TRUE)

Arguments

s

characters

space

whether to also escape white space, default is true.

Value

An R string

Examples

ui <- flex_div(
  shiny::textInput('id', ' ', width = '100%',
                   value = 'Height not aligned'),
  actionButtonStyled('ok', 'Button1', width = '100%',),
  shiny::textInput('id2', html_asis(' '), width = '100%',
                   value = 'Heights aligned'),
  actionButtonStyled('ok2', 'Button2', width = '100%',),
  ncols = 2
)
if(interactive()){
  shiny::shinyApp(ui = shiny::fluidPage(shiny::fluidRow(ui)),
                  server = function(input, output, session){})
}

Combine, add, or remove 'HTML' classes

Description

Combine 'HTML' classes to produce nice, clean 'HTML' class string via combine_html_class, or to remove a class via remove_html_class

Usage

combine_html_class(...)

remove_html_class(target, class)

Arguments

...

one or more characters, classes to combine; duplicated classes will be removed

target

characters, class list

class

one or more characters, classes to be removed from target

Value

A character string of new 'HTML' class

Examples

# Combine classes "a b c d e"
combine_html_class("a", "b  a", c("c", " d", "b"), list("e ", "a"))

# Remove class
remove_html_class("a b   c  e", c("b", "c "))

Apply each elements with index as second input

Description

Apply function with an index variable as the second input.

Usage

iapply(X, FUN, ..., .method = c("sapply", "lapply", "vapply"))

Arguments

X

a vector (atomic or list)

FUN

the function to be applied to each element of X: see 'Details'.

...

passed to apply methods

.method

method to use, default is sapply

Details

FUN will be further passed to the apply methods. Unlike lapply, FUN is expected to have at least two arguments. The first argument is each element of X, the second argument is the index number of the element.

Value

a list or matrix depends on .method. See lapply


Check whether a function, environment comes from a namespace

Description

A coarse way to find if a function comes from a package.

Usage

is_from_namespace(x, recursive = TRUE)

Arguments

x

function, environment, language (with environment attached)

recursive

whether to recursively search parent environments

Value

logical true if x or its environment is defined in a namespace; returns false if the object is atomic, or defined in/from global environment, or an empty environment.

Examples

is_from_namespace(baseenv())        # TRUE
is_from_namespace(utils::read.csv)  # TRUE

x <- function(){}
is_from_namespace(NULL)             # FALSE
is_from_namespace(x)                # FALSE
is_from_namespace(emptyenv())       # FALSE

# Let environment of `x` be base environment
# (exception case)
environment(x) <- baseenv()
is_from_namespace(x)        # TRUE

Apply, but in parallel

Description

Apply, but in parallel

Usage

lapply_async2(
  x,
  FUN,
  FUN.args = list(),
  callback = NULL,
  plan = TRUE,
  future.chunk.size = NULL,
  future.seed = sample.int(1, n = 1e+05 - 1),
  ...
)

Arguments

x

vector, list

FUN

function to apply on each element of x

FUN.args

more arguments to feed into FUN

callback

function to run after each iteration

plan

logical, or character or future plan; see Details.

future.chunk.size, future.seed

see also future_lapply. If you want the callbacks to be called immediately after each loop, then set it to 1, which is not optimal but the only way right now.

...

passed to plan

Details

When plan is logical, FALSE means use current plan. If plan=TRUE, then it equals to plan='multicore'. For characters, plan can be 'multicore', 'callr', 'sequential', 'multisession', 'multiprocess', etc. Alternatively, you could pass future plan objects.

Value

same as with(FUN.args, lapply(x, function(el){eval(body(FUN))}))

See Also

make_forked_clusters

Examples

library(future)
plan(sequential)

# Use sequential plan
# 1. Change `plan` to 'multicore', 'multisession', or TRUE to enable
# multi-core, but still with progress information
# 2. Change plan=FALSE will use current future plan
res <- lapply_async2(100:200, function(x){
  return(x+1)
}, callback = function(e){
  sprintf('Input=%d', e)
}, plan = 'sequential')

# Disable callback message, then the function reduce to
# normal `future.apply::future_lapply`
res <- lapply_async2(100:200, function(x){
  return(x+1)
}, callback = NULL, plan = FALSE)

if(interactive()) {

  # PID are different, meaning executing in different sessions
  lapply_async2(1:4, function(x){
    Sys.getpid()
  })
}

Apply function with rs_exec

Description

Apply function with rs_exec

Usage

lapply_callr(
  x,
  fun,
  ...,
  .callback = NULL,
  .globals = list(),
  .ncores = future::availableCores(),
  .packages = attached_packages(),
  .focus_on_console = TRUE,
  .rs = FALSE,
  .quiet = FALSE,
  .name = "",
  .wait = TRUE
)

Arguments

x

vector or list

fun

function

...

passed to function, see lapply

.callback

a function takes zero, one, or two arguments and should return a string to show in the progress

.globals

a named list that fun relies on

.ncores

number of cores to use; only used when .wait=TRUE

.packages

packages to load

.focus_on_console

whether to focus on console once finished; is only used when .rs is true

.rs

whether to create 'RStudio' jobs; default is false

.quiet

whether to suppress progress message

.name

the name of progress and jobs

.wait

whether to wait for the results; default is true, which blocks the main session waiting for results.

Value

When .wait=TRUE, returns a list that should be, in most of the cases, identical to lapply; when .wait=FALSE, returns a function that collects results.

See Also

rs_exec

Examples

if(interactive()){

  lapply_callr(1:3, function(x, a){
    c(Sys.getpid(), a, x)
  }, a = 1)

  lapply_callr(1:30, function(x)
    {
      Sys.sleep(0.1)
      sprintf("a + x = %d", a + x)
    }, .globals = list(a = 1),
    .callback = I, .name = "Test")

}

Copy elements to fastmap2

Description

Copy elements to fastmap2

Usage

list_to_fastmap2(li, map = NULL)

Arguments

li

a list or an environment

map

NULL or a fastmap2 instance

Value

If map is not NULL, elements will be added to map and return map, otherwise create a new instance.


Copy elements to fastqueue2

Description

Copy elements to fastqueue2

Usage

list_to_fastqueue2(li, queue = NULL)

Arguments

li

a list or an environment

queue

NULL or a fastqueue2 instance

Value

If map is not NULL, elements will be added to map and return map, otherwise create a new instance.


Create or Unlock a Lock

Description

A wrapper for 'synchronicity' package, but user can interrupt the lock procedure anytime, and don't have to worry about whether the lock exists or not.

Usage

dipsaus_lock(name, timeout = 10, exclusive = TRUE)

dipsaus_unlock(name, timeout = 10, exclusive = TRUE)

dipsaus_resetlocks(name)

Arguments

name

character, the locker's name, must be only letters and digits

timeout

numeric, seconds to wait for the locker to lock or unlock

exclusive

ignored

Value

Logical, whether the operation succeed.

Examples

# Clear existing locks
dipsaus::dipsaus_resetlocks()

# unlock to prepare for the example
dipsaus_unlock('testlocker', timeout = 0.01)

# Create a locker, return TRUE
lock_success = dipsaus_lock('testlocker')
if(lock_success){
  cat2('testlocker has been locked')
}

# test whether locker has been locked
lock_success = dipsaus_lock('testlocker', timeout = 0.01)
if(!lock_success){
  cat2('attempt to lock testlocker failed')
}

# unlock
dipsaus_unlock('testlocker', timeout = 0.01)

# clean up
dipsaus::dipsaus_resetlocks()

Create forked clusters, but more than that

Description

Creates forked clusters. If fails, then switch to alternative plan (default is "multisession").

Usage

make_forked_clusters(
  workers = future::availableCores(),
  on_failure = getOption("dipsaus.cluster.backup", "sequential"),
  clean = FALSE,
  ...
)

Arguments

workers

positive integer, number of cores to use

on_failure

alternative plan to use if failed. This is useful when forked process is not supported (like 'windows'); default is options("dipsaus.cluster.backup") or 'sequential'

clean

whether to reverse the plan on exit. This is useful when use make_forked_clusters inside of a function. See details and examples.

...

passing to future::plan

Details

This was original designed as a wrapper for future::plan(future::multicore, ...). Forked clusters are discouraged when running in 'RStudio' because some pointers in 'RStudio' might be incorrectly handled, causing fork-bombs. However, forked process also has big advantages over other parallel methods: there is no data transfer needed, hence its speed is very fast. Many external pointers can also be shared using forked process. Since version 1.14.0, unfortunately, forked 'multicore' is banned by future package by default, and you usually need to enable it manually. This function provides a simple way of enable it and plan the future at the same time.

On windows, forked process is not supported, under this situation, the plan fall back to sequential, which might not be what you want. In such case, this function provides an alternative strategy that allows you to plan. You could also always enable the alternative strategy by setting dipsaus.no.fork option to true.

The parameter clean allows you to automatically clean the plan. This function allows you to reverse back to previous plan automatically once your function exits. For example, users might have already set up their own plans, clean=TRUE allows you to set the plan back to those original plans once function exit. To use this feature, please make sure this function is called within another function, and you must collect results before exiting the outer function.

Value

Current future plan

See Also

lapply_async2

Examples

if(interactive()){

  # ------ Basic example
  library(future)
  library(dipsaus)

  # sequential
  plan("sequential")

  make_forked_clusters()
  plan()  # multicore, or multisession (on windows)

  Sys.getpid()  # current main session PID
  value(future({Sys.getpid()}))  # sub-process PID, evaluated as multicore

  # ------ When fork is not supported

  # reset to default single core strategy
  plan("sequential")

  # Disable forked process
  options("dipsaus.no.fork" = TRUE)
  options("dipsaus.cluster.backup" = "multisession")

  # Not fall back to multisession
  make_forked_clusters()
  plan()

  # ------ Auto-clean

  # reset plan
  plan("sequential")
  options("dipsaus.no.fork" = FALSE)
  options("dipsaus.cluster.backup" = "multisession")

  # simple case:
  my_func <- function(){
    make_forked_clusters(clean = TRUE)

    fs <- lapply(1:4, function(i){
      future({Sys.getpid()})
    })

    unlist(value(fs))
  }

  my_func()    # The PIDs are different, meaning they ran in other sessions
  plan()       # The plan is sequential, auto reversed strategy

  # ------ Auto-clean with lapply_async2
  my_plan <- plan()

  # lapply_async2 version of the previous task
  lapply_async2(1:4, function(i){
    Sys.getpid()
  })

  identical(plan(), my_plan)

}

Create R object map.

Description

Provides five types of map that fit in different use cases.

Usage

session_map(map = fastmap::fastmap())

rds_map(path = tempfile())

text_map(path = tempfile())

Arguments

map

a fastmap::fastmap() list

path

directory path where map data should be stored

Details

There are five types of map implemented. They all inherit class AbstractMap. There are several differences in use case scenarios and they backend implementations.

session_map

A session map takes a fastmap object. All objects are stored in current R session. This means you cannot access the map from other process nor parent process. The goal of this map is to share the data across different environments and to store global variables, as long as they share the same map object. If you are looking for maps that can be shared by different processes, check the rest map types. The closest map type is rds_map.

rds_map

An 'RDS' map uses file system to store values. The values are stored separately in '.rds' files. Compared to session maps, 'RDS' map can be shared across different R process. It's recommended to store large files in rds_map. If the value is not large in RAM, text_map is recommended.

text_map

A 'text' map uses file system to store values. Similar to rds_map, it can be stored across multiple processes as long as the maps share the same file directory. However, unlike rds_map, text_map the text_map can only store basic data values, namely atom data types. The supported types are: numeric, character, vector, list, matrix It's highly recommended to convert factors to characters. Do NOT use if the values are functions or environments. The recommended use case scenario is when the speed is not the major concern, and you want to preserve data with backward compatibility. Otherwise it's highly recommended to use rds_map.

Value

An R6 instance that inherits AbstractMap

Examples

# ----------------------Basic Usage ----------------------

# Define a path to your map.
path = tempfile()
map <- rds_map(path)

# Reset
map$reset()

# Check if the map is corrupted.
map$validate()

# You have not set any key-value pairs yet.
# Let's say two parallel processes (A and B) are sharing this map.
# Process A set values
map$keys()

# Start push
# set a normal message
map$set(key = 'a', value = 1)

# set a large object
map$set(key = 'b', value = rnorm(100000))

# set an object with hash of another object
map$set(key = 'c', value = 2, signature = list(
  parameter1 = 123,
  parameter2 = 124
))

# Check what's in the map from process B
mapB <- rds_map(path)
mapB$keys()
mapB$keys(include_signatures = TRUE)

# Number of key-values pairs in the map.
mapB$size()

# Check if key exists
mapB$has(c('1','a', 'c'))

# Check if key exists and signature also matches
mapB$has('c', signature = list(
  parameter1 = 123,
  parameter2 = 124
))

# Signature changed, then return FALSE. This is especially useful when
# value is really large and reading the value takes tons of time
mapB$has('c', signature = list(
  parameter1 = 1244444,
  parameter2 = 124
))

# Destroy the map's files altogether.
mapB$destroy()

## Not run: 
  # Once destroyed, validate will raise error
  mapB$validate()

## End(Not run)

Mask a function with given variables

Description

Modifies the default behavior of the function by adding one environment layer on top of input function. The masked variables are assigned directly to the environment.

Usage

mask_function2(f, ..., .list = list())

Arguments

f

any function

..., .list

name-value pairs to mask the function

Value

a masked function

Examples

a <- 123
f1 <- function(){
  a + 1
}
f1()   # 124

f2 <- mask_function2(f1, a = 1)
f2()   # a is masked with value 1, return 2

environment(f1)  # global env
environment(f2)  # masked env

env <- environment(f2)
identical(parent.env(env), environment(f1))  # true
env$a  # masked variables: a=1

Recursively match calls and modify arguments

Description

Recursively match calls and modify arguments

Usage

match_calls(
  call,
  recursive = TRUE,
  replace_args = list(),
  quoted = FALSE,
  envir = parent.frame(),
  ...
)

Arguments

call

an R expression

recursive

logical, recursively match calls, default is true

replace_args

named list of functions, see examples

quoted

logical, is call quoted

envir

which environment should call be evaluated

...

other parameters passing to match.call

Value

A nested call with all arguments matched

Examples

library(dipsaus); library(shiny)

# In shiny modules, we might want to add ns() to inputIds
# In this example, textInput(id) will become textInput(ns(id))
match_calls(lapply(1:20, function(i){
  textInput(paste('id_', i), paste('Label ', i))
}), replace_args = list(
  inputId = function(arg, call){ as.call(list(quote(ns), arg)) }
))

Calculates mean and standard error of mean

Description

Calculates mean and standard error of mean

Usage

mean_se(x, na.rm = FALSE, se_na_as_zero = na.rm)

Arguments

x

R numerical object

na.rm

whether to remove NA; default is false

se_na_as_zero

see na_as_zero in ste_mean

Value

A named vector containing the mean and standard error of mean (ste_mean).

See Also

ste_mean

Examples

# Mean should be near 0 (mean of standard normal)
# standard error of mean should be near 0.01
mean_se(rnorm(10000))

Get max RAM size This is an experimental function that is designed for non-windows systems

Description

Get max RAM size This is an experimental function that is designed for non-windows systems

Usage

mem_limit2()

Value

a list of total free memory.


Create new function that supports 'quasi-quosure' syntax

Description

Create new function that supports 'quasi-quosure' syntax

Usage

new_function2(
  args = alist(),
  body = {
 },
  env = parent.frame(),
  quote_type = c("unquoted", "quote", "quo"),
  quasi_env = parent.frame()
)

Arguments

args

named list of function formals

body

function body expression, supports 'quasi-quosure' syntax

env

declare environment of the function

quote_type

character, whether body is unquoted, quoted, or a 'quo' object (from 'rlang' package)

quasi_env

where the 'quasi-quosure' should be evaluated, default is parent environment

Details

An unquoted body expression will be quoted, all the expressions with 'quasi-quosure' like !!var will be evaluated and substituted with the value of var. For a 'quosure', quo_squash will be applied. A quoted expression will not be substitute, but will be expanded if any 'quasi-quosure' detected

args must be a list object, see formals. For arguments with no default values, or quoted defaults, use alist. An arg=alist(a=) will result in a function like function(a){...}. See examples for more details.

Value

a function

See Also

new_function

Examples

# ------------ standard usage ------------
x <- 1:10
f1 <- new_function2(alist(a=), { print(a + x) }, env = environment())
f1(0)

x <- 20:23
f1(0)  # result changed as x changed

# ------------ 'quasi-quosure' syntax ------------
x <- 1:10
f2 <- new_function2(alist(a=), { print(a + !!x) })
print(f2)

f2(0)

x <- 20:23
f2(0)  # result doesn't change as f2 doesn't depend on x anymore

# ------------ argument settings ------------

default <- 123

# default with values pre-specified
new_function2(list(a = default))   # function (a = 123){}

# default with values unevaluated
new_function2(list(a = quote(default)))   # function (a = default){}
new_function2(alist(a = default))

# missing default
new_function2(alist(a = ))    # function (a){}

Pipe-friendly no-operation function

Description

returns the first input with side effects

Usage

no_op(.x, .expr, ..., .check_fun = TRUE)

Arguments

.x

any R object

.expr

R expression that produces side effects

..., .check_fun

see 'details'

Details

no_op is a pipe-friendly function that takes any values in, evaluate expressions but still returns input. This is very useful when you have the same input across multiple functions and you want to use pipes.

.expr is evaluated with a special object '.', you can use '.' to represent .x in .expr. For example, if .x=1:100, then plot(x=seq(0,1,length.out = 100), y=.) is equivalent to plot(x=seq(0,1,length.out = 100), y=1:100).

.check_fun checks whether .expr returns a function, if yes, then the function is called with argument .x and ...

Value

The value of .x

Examples

library(magrittr)

## 1. Basic usage

# Will print('a') and return 'a'
no_op('a', print)

# Will do nothing and return 'a' because .check_fun is false
no_op('a', print, .check_fun = FALSE)

# Will print('a') and return 'a'
no_op('a', print(.), .check_fun = FALSE)

## 2. Toy example
library(graphics)

par(mfrow = c(2,2))
x <- rnorm(100)

# hist and plot share the same input `rnorm(100)`

x %>%
  # .expr is a function, all ... are passed as other arguments
  no_op( hist, nclass = 10 ) %>%
  no_op( plot, x = seq(0,1,length.out = 100) ) %>%

  # Repeat the previous two plots, but with different syntax
  no_op({ hist(., nclass = 10) }) %>%
  no_op({ plot(x = seq(0,1,length.out = 100), y = .) }) %>%

  # The return statement is ignored

  no_op({ return(x + 1)}) ->
  y

# x is returned at the end

identical(x, y)   # TRUE

Check if a package is installed

Description

Check if a package is installed

Usage

package_installed(pkgs, all = FALSE)

Arguments

pkgs

vector of package names

all

only returns TRUE if all packages are installed. Default is FALSE.

Value

logical, if packages are installed or not. If all=TRUE, return a logical value of whether all packages a re installed.

Examples

# Check if package base and dipsaus are installed
package_installed(c('base', 'dipsaus'))

# Check if all required packages are installed
package_installed(c('base', 'dipsaus'), all = TRUE)

Parse Text Into Numeric Vectors

Description

Parse Text Into Numeric Vectors

Usage

parse_svec(text, sep = ",", connect = "-:|", sort = FALSE, unique = TRUE)

Arguments

text

string with chunks, e.g. "1-10, 14, 16-20, 18-30" has 4 chunks

sep

default is ",", character used to separate chunks

connect

characters defining connection links for example "1:10" is the same as "1-10"

sort

sort the result

unique

extract unique elements

Value

a numeric vector. For example, "1-3" returns c(1, 2, 3)

See Also

deparse_svec

Examples

parse_svec('1-10, 13:15,14-20')

Wrapper to cache key-value pairs and persist across sessions

Description

This class is designed to persist arbitrary R objects locally and share across different sessions. The container consists two-level caches. The first one is session-based, meaning it's only valid under current R session and will be cleared once the session is shut down. The second is the persist-level map, which will persist to hard drive and shared across sessions. See cache method in 'details'.

Public Methods

initialize(..., backend = rds_map)

The constructor. backend must inherit AbstractMap, ... will be passed to backend$new(...). To check available back-ends and their use cases, see map.

reset(all = FALSE)

Reset container. If all is set to be true, then reset session-based and hard-drive-based, otherwise only reset session-based container.

destroy(all = FALSE)

destroy the container. Only use it when you want to finalize the container in reg.finalizer.

has(key, signature = NULL)

returns a list of true/false (logical) vectors indicating whether keys exist in the container, if signature is used when caching the key-value pairs, then it also checks whether signature matches. This is very important as even if the keys match but signature is wrong, the results will be false.

remove(keys, all = TRUE)

Remove keys in the container. Default is to remove the keys in both levels. If all=FALSE, then only remove the key in current session

cache(key, value, signature = NULL, replace = FALSE, persist = FALSE)

key and signature together form the unique identifier for the value. By default signature is none, but it's very useful when value if large, or key is not a string. replace indicates whether to force replace the key-value pairs even if the entry exists. If persist is true, then the value is stored in hard-disks, otherwise the value will be deleted once the session is closed.

See Also

map

Examples

container = PersistContainer$new(tempfile())

# Reset the container so that values are cleared
container$reset(all = TRUE)

# Store `1` to 'a' with signature 111 to a non-persist map
# returns 1
container$cache(key = 'a', value = 1, signature = 111, persist = FALSE)

# Replace 'a' with 3
# returns 3
container$cache(key = 'a', value = 3, signature = 111,
                persist = TRUE, replace = TRUE)

# check if 'a' exists with signature 111
container$has('a', signature = 111)    # TRUE
# When you only have 'a' but no signature
container$has('a')                     # TRUE
# check if 'a' exists with wrong signature 222
container$has('a', signature = 222)    # FALSE


# Store 'a' with 2 with same signature
# will fail and ignore the value (value will not be evaluated if signatured)
# Return 2 (Important! use cached values)
container$cache(key = 'a', value = {
  print(123)
  return(2)
}, signature = 111, replace = FALSE)

# When no signature is present
# If the key exists (no signature provided), return stored value
# returns 3
container$cache(key = 'a', value = 4)

# replace is TRUE (no signature provided), signature will be some default value
container$cache(key = 'a', value = 2, replace = TRUE)

# destroy the container to free disk space
container$destroy()

'Shiny' progress bar, but can run without reactive context

Description

'Shiny' progress bar, but can run without reactive context

Usage

progress2(
  title,
  max = 1,
  ...,
  quiet = FALSE,
  session = shiny::getDefaultReactiveDomain(),
  shiny_auto_close = FALSE,
  log = NULL
)

Arguments

title

character, task description

max

maximum number of items in the queue

...

passed to shiny::Progress$new(...)

quiet

suppress console output, ignored in shiny context.

session

'shiny' session, default is current reactive domain

shiny_auto_close

logical, automatically close 'shiny' progress bar once current observer is over. Default is FALSE. If setting to TRUE, then it's equivalent to p <- progress2(...); on.exit({p$close()}, add = TRUE).

log

function when running locally, default is NULL, which redirects to cat2

Value

A list of functions:

inc(detail, message = NULL, amount = 1, ...)

Increase progress bar by amount (default is 1).

close()

Close the progress

reset(detail = '', message = '', value = 0)

Reset the progress to value (default is 0), and reset information

get_value()

Get current progress value

is_closed()

Returns logical value if the progress is closed or not.

Examples

progress <- progress2('Task A', max = 2)
progress$inc('Detail 1')
progress$inc('Detail 2')
progress$close()

# Check if progress is closed
progress$is_closed()

# ------------------------------ Shiny Example ------------------------------
library(shiny)
library(dipsaus)

ui <- fluidPage(
  actionButtonStyled('do', 'Click Here', type = 'primary')
)

server <- function(input, output, session) {
  observeEvent(input$do, {
    updateActionButtonStyled(session, 'do', disabled = TRUE)
    progress <- progress2('Task A', max = 10, shiny_auto_close = TRUE)
    lapply(1:10, function(ii){
      progress$inc(sprintf('Detail %d', ii))
      Sys.sleep(0.2)
    })
    updateActionButtonStyled(session, 'do', disabled = FALSE)
  })
}

if(interactive()){
  shinyApp(ui, server)
}

Register customized input to enable support by compound input

Description

Register customized input to enable support by compound input

Usage

registerInputBinding(
  fname,
  pkg,
  shiny_binding,
  update_function = NULL,
  quiet = FALSE
)

Arguments

fname

character, function name, such as "textInput"

pkg

character, package name, like "shiny"

shiny_binding

character, 'JavaScript' binding name.See examples

update_function

character, update function such as "shiny::textInput"

quiet

logical, whether to suppress warnings

Value

a list of binding functions, one is 'JavaScript' object key in Shiny.inputBindings, the other is 'shiny' update function in R end.

Examples

# register shiny textInput
registerInputBinding('textInput', 'shiny',
                     'shiny.textInput', 'shiny::updateTextInput')

# Register shiny actionLink
# In "Shiny.inputbindings", the binding name is "shiny.actionButtonInput",
# Shiny update function is "shiny::updateActionButton"
registerInputBinding('actionLink', 'shiny',
                     'shiny.actionButtonInput', 'shiny::updateActionButton')

Restart R Session

Description

Utilize 'RStudio' functions to restart, if running without 'RStudio', use package startup (not included in this library) instead.

Usage

restart_session()

Get 'RStudio' active project

Description

Get 'RStudio' active project

Usage

rs_active_project(...)

Arguments

...

passed to rs_avail

Value

If 'RStudio' is running and current project is not none, return project name, otherwise return NA


Verify 'RStudio' version

Description

Verify 'RStudio' version

Usage

rs_avail(version_needed = "1.3", child_ok = FALSE, shiny_ok = FALSE)

Arguments

version_needed

minimum version required

child_ok

check if the current R process is a child process of the main RStudio session.

shiny_ok

if set false, then check if 'Shiny' is running, return false if shiny reactive domain is not NULL

Value

whether 'RStudio' is running and its version is above the required

See Also

isAvailable


Use 'RStudio' to open and edit files

Description

Use 'RStudio' to open and edit files

Usage

rs_edit_file(path, create = TRUE)

Arguments

path

path to file

create

whether to create if path is not found; default is true

Value

Opens the file pointing to path to edit, and returns the path


Schedule a Background Job

Description

Utilizes 'RStudio' job scheduler if correct environment is detected, otherwise call system command via Rscript

Usage

rs_exec(
  expr,
  name = "Untitled",
  quoted = FALSE,
  rs = TRUE,
  as_promise = FALSE,
  wait = FALSE,
  packages = NULL,
  focus_on_console = FALSE,
  ...,
  nested_ok = FALSE
)

Arguments

expr

R expression

name

used by 'RStudio' as name of the job

quoted

is expr quoted

rs

whether to use 'RStudio' by default

as_promise

whether to return as a promise object; default is no

wait

whether to wait for the result.

packages

packages to load in the sub-sessions

focus_on_console

whether to return back to console after creating jobs; useful when users want to focus on writing code; default is false. This feature works with 'RStudio' (>=1.4)

...

internally used

nested_ok

whether nested rs_exec is allowed; default is false; Set to true to allow nested parallel code, but use at your own risk.

Details

'RStudio' provides interfaces jobRunScript to schedule background jobs. However, this functionality only applies using 'RStudio' IDE. When launching R from other places such as terminals, the job scheduler usually result in errors. In this case, the alternative is to call system command via Rscript

The expression expr will run a clean environment. Therefore R objects created outside of the context will be inaccessible from within the child environment, and packages except for base packages will not be loaded.

There is a small difference when running within and without 'RStudio'. When running via Rscript, the environment will run under vanilla argument, which means no load, no start-up code. If you have start-up code stored at ~/.Rprofile, the start-up code will be ignored. When running within 'RStudio', the start-up code will be executed. As of rstudioapi version 0.11, there is no 'vanilla' option. This feature is subject to change in the future.

Value

If wait=TRUE, returns evaluation results of expr, otherwise a function that can track the state of job.

Examples

if(interactive()){
  h <- rs_exec(
    {
      Sys.sleep(2)
      print(Sys.getpid())
    },
    wait = FALSE, name = 'Test',
    focus_on_console = TRUE
  )
  code <- h()
  print(code)

  # wait 3 seconds
  Sys.sleep(3)
  code <- h()
  attributes(code)
}

Focus on 'RStudio' Console

Description

Focus on coding; works with 'RStudio' (>=1.4)

Usage

rs_focus_console(wait = 0.5)

Arguments

wait

wait in seconds before sending command; if too soon, then 'RStudio' might not be able to react.

Value

None


Save all documents in 'RStudio'

Description

Perform "safe" save-all action with backward compatibility: check whether 'RStudio' is running and whether rstudioapi has function documentSaveAll.

Usage

rs_save_all()

Use 'RStudio' to Select a Path on the Server

Description

Use 'RStudio' to Select a Path on the Server

Usage

rs_select_path(is_directory = TRUE)

Arguments

is_directory

whether the path should be a directory

Value

Raise error if rs_avail fails, otherwise returns the selected path


Add secondary 'CRAN'-like repository to the 'RStudio' settings

Description

Add self-hosted repository, such as 'drat', 'r-universe' to 'RStudio' preference. Please restart 'RStudio' to take changes into effect.

Usage

rs_set_repos(name, url, add = TRUE)

Arguments

name

repository name, must be unique and readable

url

the website address of the repository, starting with schemes such as 'https'.

add

whether to add to existing repository; default is true

Details

'RStudio' allows to add secondary 'CRAN'-like repository to its preference, such that users can add on-going self-hosted developing repositories (such as package 'drat', or 'r-universe'). These repositories will be set automatically when running install.packages.

Value

a list of settings.


Get 'RStudio' Viewer, or Return Default

Description

Get 'RStudio' Viewer, or Return Default

Usage

rs_viewer(
  ...,
  default = TRUE,
  version_needed = "1.3",
  child_ok = FALSE,
  shiny_ok = FALSE
)

Arguments

...

passed to viewer

default

if rs_avail fails, the value to return. Default is TRUE

version_needed, child_ok, shiny_ok

passed to rs_avail

Value

If viewer can be called and 'RStudio' is running, then launch 'RStudio' internal viewer. Otherwise if default is a function such as browseURL, then call the function with given arguments. If default is not a function, return default


Take a screenshot in shiny apps

Description

Take a screenshot of the whole page and save encoded DataURI that can be accessed via input[[inputId]].

Usage

screenshot(inputId, session = shiny::getDefaultReactiveDomain())

Arguments

inputId

the input id where the screenshot should be

session

shiny session

Value

None. However, the screenshot results can be accessed from shiny input

Examples

library(shiny)
library(dipsaus)
ui <- fluidPage(
  tagList(
    shiny::singleton(shiny::tags$head(
      shiny::tags$link(rel="stylesheet", type="text/css", href="dipsaus/dipsaus.css"),
      shiny::tags$script(src="dipsaus/dipsaus-dipterix-lib.js")
    ))
  ),
  actionButtonStyled('do', 'Take Screenshot'),
  compoundInput2('group', label = 'Group', components = list(
    textInput('txt', 'Enter something here')
  ))
)

server <- function(input, output, session) {
  observeEvent(input$do, {
    screenshot('screeshot_result')
  })
  observeEvent(input$screeshot_result, {
    showModal(modalDialog(
      tags$img(src = input$screeshot_result, width = '100%')
    ))
  })
}

if(interactive()){
  shinyApp(ui, server)
}

Provides Unique Session ID According to Current R Session

Description

Provides Unique Session ID According to Current R Session

Usage

session_uuid(pid = Sys.getpid(), attributes = FALSE)

Arguments

pid

R session process ID, default is Sys.getpid()

attributes

whether to append data used to calculate ID as attributes, default is false

Value

Character string


Set Shiny Input

Description

Shiny ‘input’ object is read-only reactive list. When try to assign values to input, errors usually occur. This method provides several work-around to set values to input. Please use along with use_shiny_dipsaus.

Usage

set_shiny_input(
  session = shiny::getDefaultReactiveDomain(),
  inputId,
  value,
  priority = c("event", "deferred", "immediate"),
  method = c("proxy", "serialize", "value", "expression"),
  quoted = TRUE
)

Arguments

session

shiny session, see shiny domains

inputId

character, input ID

value

the value to assign

priority

characters, options are "event", "deferred", and "immediate". "event" and "immediate" are similar, they always fire changes. "deferred" fire signals to other reactive/observers only when the input value has been changed

method

characters, options are "proxy", "serialize", "value", "expression". "proxy" is recommended, other methods are experimental.

quoted

is value quoted? Only used when method is "expression"

Examples

library(shiny)
library(dipsaus)
ui <- fluidPage(
  # Register widgets
  use_shiny_dipsaus(),
  actionButton('run', 'Set Input'),
  verbatimTextOutput('input_value')
)

server <- function(input, output, session) {
  start = Sys.time()

  output$input_value <- renderPrint({

    now <- input$key
    now %?<-% start
    cat('This app has been opened for ',
        difftime(now, start, units = 'sec'), ' seconds')
  })

  observeEvent(input$run, {
    # setting input$key to Sys.time()
    set_shiny_input(session, 'key', Sys.time())
  })
}

if(interactive()){
  shinyApp(ui, server)
}

Get Internal Storage Type

Description

Get internal (C) data types; See https://cran.r-project.org/doc/manuals/r-release/R-ints.pdf Page 1 for more different SEXPTYPEs.

Usage

sexp_type2(x)

## S3 method for class 'sexp_type2'
as.character(x, ...)

## S3 method for class 'sexp_type2'
print(x, ...)

Arguments

x

any R object

...

ignored

Value

An integer of class "sexp_type2"

See Also

storage.mode

Examples

# 1 vs 1L

# Integer case
sexp_type2(1L)

# double
sexp_type2(1)

# Built-in function
sexp_type2(`+`)

# normal functions
sexp_type2(sexp_type2)

# symbols (quoted names)
sexp_type2(quote(`+`))

# Calls (quoted expressions)
sexp_type2(quote({`+`}))

Create Shared Finalization to Avoid Over Garbage Collection

Description

Generates a function to be passed to reg.finalizer

Usage

shared_finalizer(x, key, fin, onexit = FALSE, ...)

## Default S3 method:
shared_finalizer(x, key, fin, onexit = FALSE, ...)

## S3 method for class 'R6'
shared_finalizer(x, key, fin, onexit = TRUE, ...)

## S3 method for class 'fastmap'
shared_finalizer(x, key, fin, onexit = FALSE, ...)

## S3 method for class 'fastmap2'
shared_finalizer(x, key, fin, onexit = FALSE, ...)

Arguments

x

object to finalize

key

characters that should be identical if finalization method is to be shared

fin

Shared finalization: function to call on finalization; see reg.finalizer. See details.

onexit

logical: should the finalization be run if the object is still uncollected at the end of the R session? See reg.finalizer

...

passed to other methods

Details

The main purpose of this function is to allow multiple objects that point to a same source (say a temporary file) to perform clean up when all the objects are garbage collected.

Base function reg.finalizer provides finalization to to garbage collect single R environment. However, when multiple environments share the same file, finalizing one single environment will result in removing the file so that all the other environment lose the reference. (See example "Native reg.finalizer fails example")

The argument of fin varies according to different types of x. For environments, fin contains and only contains one parameter, which is the environment itself. This is the same as reg.finalizer. For R6 classes, fin is ignored if class has "shared_finalize" method defined. For fastmap or fastmap2 instances, fin accepts no argument.

Examples

# ------------ Environment example ------------
file_exists <- TRUE
clear_files <- function(e){
  print('Clean some shared files')
  # do something to remove files
  file_exists <<- FALSE
}

# e1, e2 both require file existence
e1 <- new.env()
e1$valid <- function(){ file_exists }
e2 <- new.env()
e2$valid <- function(){ file_exists }

e1$valid(); e2$valid()

# we don't want to remove files when either e1,e2 gets
# garbage collected, however, we want to run `clear_files`
# when system garbage collecting *both* e1 and e2

# Make sure `key`s are identical
shared_finalizer(e1, 'cleanXXXfiles', clear_files)
shared_finalizer(e2, 'cleanXXXfiles', clear_files)

# Now remove e1, files are not cleaned, and e2 is still valid
rm(e1); invisible(gc(verbose = FALSE))
e2$valid()  # TRUE
file_exists # TRUE

# remove both e1 and e2, and file gets removed
rm(e2); invisible(gc(verbose = FALSE))
file_exists  # FALSE

# ------------ R6 example ------------

cls <- R6::R6Class(
  classname = '...demo...',
  cloneable = TRUE,
  public = list(
    file_path = character(0),
    shared_finalize = function(){
      cat('Finalize shared resource - ', self$file_path, '\n')
    },
    finalize = function(){
      cat('Finalize private resource\n')
    },
    initialize = function(file_path){
      self$file_path = file_path
      shared_finalizer(self, key = self$file_path)
    }
  )
)
e1 <- cls$new('file1')
rm(e1); invisible(gc(verbose = FALSE))

e1 <- cls$new('file2')

# A copy of e1
e2 <- e1$clone()
# unfortunately, we have to manually register
shared_finalizer(e2, key = e2$file_path)

# Remove e1, gc only free private resource
rm(e1); invisible(gc(verbose = FALSE))

# remove e1 and e2, run shared finalize
rm(e2); invisible(gc(verbose = FALSE))

# ------------ fastmap/fastmap2 example -----------

# No formals needed for fastmap/fastmap2
fin <- function(){
  cat('Finalizer is called\n')
}
# single reference case
e1 <- dipsaus::fastmap2()
shared_finalizer(e1, 'fin-fastmap2', fin = fin)
invisible(gc(verbose = FALSE)) # Not triggered
rm(e1); invisible(gc(verbose = FALSE)) # triggered

# multiple reference case
e1 <- dipsaus::fastmap2()
e2 <- dipsaus::fastmap2()
shared_finalizer(e1, 'fin-fastmap2', fin = fin)
shared_finalizer(e2, 'fin-fastmap2', fin = fin)

rm(e1); invisible(gc(verbose = FALSE)) # Not triggered
rm(e2); invisible(gc(verbose = FALSE)) # triggered

# ------------ Native reg.finalizer fails example ------------

# This example shows a failure case using base::reg.finalizer

file_exists <- TRUE
clear_files <- function(e){
  print('Clean some shared files')
  # do something to remove files
  file_exists <<- FALSE
}

# e1, e2 both require file existence
e1 <- new.env()
e1$valid <- function(){ file_exists }
e2 <- new.env()
e2$valid <- function(){ file_exists }

reg.finalizer(e1, clear_files)
reg.finalizer(e2, clear_files)
gc()
file_exists

# removing e1 will invalidate e2
rm(e1); gc()
e2$valid()    # FALSE

# Clean-ups
rm(e2); gc()

Shift Array by Index

Description

Re-arrange arrays in parallel

Usage

shift_array(x, shift_idx, shift_by, shift_amount)

Arguments

x

array, must have at least matrix

shift_idx

which index is to be shifted

shift_by

which dimension decides shift_amount

shift_amount

shift amount along shift_idx

Details

A simple use-case for this function is to think of a matrix where each row is a signal and columns stand for time. The objective is to align (time-lock) each signal according to certain events. For each signal, we want to shift the time points by certain amount.

In this case, the shift amount is defined by shift_amount, whose length equals to number of signals. shift_idx=2 as we want to shift time points (column, the second dimension) for each signal. shift_by=1 because the shift amount is depend on the signal number.

Examples

x <- matrix(1:10, nrow = 2, byrow = TRUE)
z <- shift_array(x, 2, 1, c(1,2))

y <- NA * x
y[1,1:4] = x[1,2:5]
y[2,1:3] = x[2,3:5]

# Check if z ang y are the same
z - y

# array case
# x is Trial x Frequency x Time
x <- array(1:27, c(3,3,3))

# Shift time for each trial, amount is 1, -1, 0
shift_amount <- c(1,-1,0)
z <- shift_array(x, 3, 1, shift_amount)

if(interactive()){

par(mfrow = c(3, 2))
for( ii in 1:3 ){
  image(t(x[ii, ,]), ylab = 'Frequency', xlab = 'Time',
        main = paste('Trial', ii))
  image(t(z[ii, ,]), ylab = 'Frequency', xlab = 'Time',
        main = paste('Shifted amount:', shift_amount[ii]))
}

}

Simple shiny alert that uses 'JavaScript' promises

Description

Simple shiny alert that uses 'JavaScript' promises

Usage

shiny_alert2(
  title = "Alert",
  text = "",
  icon = c("info", "warning", "success", "error"),
  danger_mode = FALSE,
  auto_close = TRUE,
  buttons = NULL,
  on_close = NULL,
  session = shiny::getDefaultReactiveDomain()
)

close_alert2()

Arguments

title

title of the alert

text

alert body text (pure text)

icon

which icon to display, choices are 'info', 'success' 'warning', and 'error'

danger_mode

true or false; if true, then the confirm button turns red and the default focus is set on the cancel button instead. To enable danger mode, buttons must be TRUE as well

auto_close

whether to close automatically when clicking outside of the alert

buttons

logical value or a named list, or characters. If logical, it indicates whether buttons should be displayed or not; for named list, the names will be the button text, see example; for characters, the characters will be the button text and value

on_close

NULL or a function that takes in one argument. If function is passed in, then it will be executed when users close the alert

session

shiny session, see domains

Value

a temporary input ID, currently not useful

Examples

library(shiny)
library(dipsaus)
ui <- fluidPage(
  use_shiny_dipsaus(),
  actionButtonStyled('btn', 'btn')
)

server <- function(input, output, session) {
  observeEvent(input$btn, {
    shiny_alert2(
      on_close = function(value) {
        cat("Modal closed!\n")
        print(value)
      },
      title = "Title",
      text = "message",
      icon = "success",
      auto_close = FALSE,
      buttons = list("cancel" = TRUE,
                     "YES!" = list(value = 1))
    )
  })
}

if(interactive()){
  shinyApp(ui, server, options = list(launch.browser = TRUE))
}

Detect whether 'Shiny' is running

Description

Detect whether 'Shiny' is running

Usage

shiny_is_running()

Value

logical, true if current shiny context is active


Standard error of mean

Description

Ported from 'rutabaga' package, calculates standard error of mean. The sample size is determined by number of none-NA numbers by default

Usage

ste_mean(x, na.rm = FALSE, na_as_zero = na.rm, ...)

## Default S3 method:
ste_mean(x, na.rm = FALSE, na_as_zero = na.rm, ...)

Arguments

x

R object

na.rm

whether to remove NA; default is false

na_as_zero

whether convert NA to zero

...

passed to other methods

Value

A numerical number that is the standard error of the mean

See Also

mean_se

Examples

x <- rnorm(100)

ste_mean(x)

# internal implementation
identical(ste_mean(x), sd(x) / sqrt(100))

Fast Calculation of Sum-squared for Large Matrices/Vectors

Description

Calculate sum(x^2), but faster when the number of elements exceeds 1000.

Arguments

x

double, integer, or logical vector/matrix

Value

A numerical scalar

Examples

x <- rnorm(10000)
sumsquared(x)

# Compare speed
microbenchmark::microbenchmark(
  cpp = {sumsquared(x)},
  r = {sum(x^2)}
)

Synchronize Shiny Inputs

Description

Synchronize Shiny Inputs

Usage

sync_shiny_inputs(
  input,
  session,
  inputIds,
  uniform = rep("I", length(inputIds)),
  updates,
  snap = 250,
  ignoreNULL = TRUE,
  ignoreInit = FALSE
)

Arguments

input, session

shiny reactive objects

inputIds

input ids to be synchronized

uniform

functions, equaling to length of inputIds, converting inputs to a uniform values

updates

functions, equaling to length of inputIds, updating input values

snap

numeric, milliseconds to defer the changes

ignoreNULL, ignoreInit

passed to bindEvent

Value

none.

Examples

library(shiny)

ui <- fluidPage(
  textInput('a', 'a', value = 'a'),
  sliderInput('b', 'b', value = 1, min = 0, max = 1000)
)

server <- function(input, output, session) {
  sync_shiny_inputs(input, session, inputIds = c('a', 'b'), uniform = list(
    function(a){as.numeric(a)},
    'I'
  ), updates = list(
    function(a){updateTextInput(session, 'a', value = a)},
    function(b){updateSliderInput(session, 'b', value = b)}
  ))

}

if( interactive() ){
  shinyApp(ui, server)
}

Test whether function has certain arguments

Description

Test whether function has certain arguments

Usage

test_farg(fun, arg, dots = TRUE)

Arguments

fun

function

arg

characters of function arguments

dots

whether fun's dots (...) counts

Examples

a <- function(n = 1){}

# Test whether `a` has argument called 'b'
test_farg(a, 'b')

# Test whether `a` has argument called 'b' and 'n'
test_farg(a, c('b', 'n'))

# `a` now has dots
a <- function(n = 1, ...){}

# 'b' could goes to dots and a(b=...) is still valid
test_farg(a, 'b')

# strict match, dots doesn't count
test_farg(a, 'b', dots = FALSE)

Calculate time difference and return a number

Description

Calculate time difference and return a number

Usage

time_delta(t1, t2, units = "secs")

Arguments

t1

time start

t2

time end

units

character, choices are 'secs', 'mins', 'hours', and 'days'

Value

numeric difference of time in units specified

Examples

a = Sys.time()
Sys.sleep(0.3)
b = Sys.time()

time_delta(a, b) # In seconds, around 0.3
time_delta(a, b, 'mins') # in minutes, around 0.005

Convert file to 'base64' format

Description

Convert file to 'base64' format

Usage

to_datauri(file, mime = "")

Arguments

file

file path

mime

'mime' type, default is blank

Value

a 'base64' data string looks like 'data:;base64,AEF6986...'


Convert bytes to KB, MB, GB,...

Description

Convert bytes to KB, MB, GB,...

Usage

to_ram_size(s, kb_to_b = 1000)

Arguments

s

size

kb_to_b

how many bytes counts one KB, 1000 by default

Value

numeric equaling to s but formatted


Migrate a fastmap2 object to a new one

Description

Migrate a fastmap2 object to a new one

Usage

update_fastmap2(from, to, override = TRUE)

Arguments

from, to

fastmap2 object

override

whether to override keys in to if they exist

Value

Map to

See Also

fastmap2


Update styled action button

Description

Update styled action button

Usage

updateActionButtonStyled(
  session,
  inputId,
  label = NULL,
  icon = NULL,
  type = NULL,
  disabled = NULL,
  ...
)

Arguments

session, inputId, label, icon

passed to shiny::updateActionButton

type

button type to update

disabled

whether to disable the button

...

ignored

Value

none

See Also

actionButtonStyled for how to define the button.


Update compound inputs

Description

Update compound inputs

Usage

updateCompoundInput2(
  session,
  inputId,
  value = NULL,
  ncomp = NULL,
  initialization = NULL,
  ...
)

Arguments

session

shiny session or session proxy

inputId

character see compoundInput2

value

list of lists, see compoundInput2 or examples

ncomp

integer, non-negative number of groups to update, NULL to remain unchanged

initialization, ...

named list of other updates

Value

none

See Also

compoundInput2 for how to define components.

Examples

## Not run: 
library(shiny); library(dipsaus)

## UI side
compoundInput2(
  'input_id', 'Group',
    div(
    textInput('text', 'Text Label'),
    sliderInput('sli', 'Slider Selector', value = 0, min = 1, max = 1)
  ),
  label_color = 1:10,
  value = list(
    list(text = '1'),  # Set text first group to be "1"
    '',                # no settings for second group
    list(sli = 0.2)    # sli = 0.2 for the third group
  ))

## server side:
updateCompoundInput2(session, 'inputid',
                     # Change the first 3 groups
                     value = lapply(1:3, function(ii){
                       list(sli = runif(1))
                     }),
                     # Change text label for all groups
                     initialization = list(
                       text = list(label = as.character(Sys.time()))
                     ))

## End(Not run)

Set up shiny plugins

Description

This function must be called from a Shiny app's UI in order for some widgets to work.

Usage

use_shiny_dipsaus(x)

Arguments

x

'HTML' tags