Title: | A Dipping Sauce for Data Analysis and Visualizations |
---|---|
Description: | Works as an "add-on" to packages like 'shiny', 'future', as well as 'rlang', and provides utility functions. Just like dipping sauce adding flavors to potato chips or pita bread, 'dipsaus' for data analysis and visualizations adds handy functions and enhancements to popular packages. The goal is to provide simple solutions that are frequently asked for online, such as how to synchronize 'shiny' inputs without freezing the app, or how to get memory size on 'Linux' or 'MacOS' system. The enhancements roughly fall into these four categories: 1. 'shiny' input widgets; 2. high-performance computing using the 'future' package; 3. modify R calls and convert among numbers, strings, and other objects. 4. utility functions to get system information such like CPU chip-set, memory limit, etc. |
Authors: | Zhengjia Wang [aut, cre], John Magnotti [ctb] (Contributed to `rutabaga.R`), Xiang Zhang [ctb] (Contributed to `rutabaga.R`) |
Maintainer: | Zhengjia Wang <[email protected]> |
License: | GPL-3 |
Version: | 0.2.9.9000 |
Built: | 2024-11-02 05:44:21 UTC |
Source: | https://github.com/dipterix/dipsaus |
lhs
' is invalid or NULL
, this function will try to assign
value
, otherwise nothing happens.Left-hand side checked assignment
Provides a way to assign default values to variables. If the statement
'lhs
' is invalid or NULL
, this function will try to assign
value
, otherwise nothing happens.
lhs %?<-% value
lhs %?<-% value
lhs |
an object to check or assign |
value |
value to be assigned if lhs is NULL |
Assign value on the right-hand side to the left-hand side if
lhs
does not exist or is NULL
# Prepare, remove aaa if exists if(exists('aaa', envir = globalenv(), inherits = FALSE)){ rm(aaa, envir = globalenv()) } # Assign aaa %?<-% 1; print(aaa) # However, if assigned, nothing happens aaa = 1; aaa %?<-% 2; print(aaa) # in a list a = list() a$e %?<-% 1; print(a$e) a$e %?<-% 2; print(a$e)
# Prepare, remove aaa if exists if(exists('aaa', envir = globalenv(), inherits = FALSE)){ rm(aaa, envir = globalenv()) } # Assign aaa %?<-% 1; print(aaa) # However, if assigned, nothing happens aaa = 1; aaa %?<-% 2; print(aaa) # in a list a = list() a$e %?<-% 1; print(a$e) a$e %?<-% 2; print(a$e)
Plus-minus operator
a %+-% b
a %+-% b
a , b
|
numeric vectors, matrices or arrays |
a +/- b
, the dimension depends on a+b
. If a+b
is
a scalar, returns a vector of two; in the case of vector, returns a matrix;
all other cases will return an array with the last dimension equal to 2.
# scalar 1 %+-% 2 # -1, 3 # vector input c(1,2,3) %+-% 2 # matrix # matrix input matrix(1:9, 3) %+-% 2 # 3x3x2 array
# scalar 1 %+-% 2 # -1, 3 # vector input c(1,2,3) %+-% 2 # matrix # matrix input matrix(1:9, 3) %+-% 2 # 3x3x2 array
value
' is invalid or NULL
, this function will not assign values and nothing happens.Right-hand side checked assignment
Provides a way to avoid assignment to the left-hand side. If the statement
'value
' is invalid or NULL
, this function will not assign values and nothing happens.
lhs %<-?% value
lhs %<-?% value
lhs |
an object to be assigned to |
value |
value to be checked |
Assign value on the right-hand side to the left-hand side if
value
does exists and is not NULL
# Prepare, remove aaa if exists if(exists('aaa', envir = globalenv(), inherits = FALSE)){ rm(aaa, envir = globalenv()) } # aaa will not be assigned. run `print(aaa)` will raise error aaa %<-?% NULL # Assign aaa %<-?% 1 print(aaa) # in a list a = list() a$e %<-?% bbb; print(a$e) a$e %<-?% 2; print(a$e)
# Prepare, remove aaa if exists if(exists('aaa', envir = globalenv(), inherits = FALSE)){ rm(aaa, envir = globalenv()) } # aaa will not be assigned. run `print(aaa)` will raise error aaa %<-?% NULL # Assign aaa %<-?% 1 print(aaa) # in a list a = list() a$e %<-?% bbb; print(a$e) a$e %<-?% 2; print(a$e)
A JavaScript style of creating functions
args %=>% expr
args %=>% expr
args |
function arguments: see |
expr |
R expression that forms the body of functions: see |
A function that takes args
as parameters and expr
as
the function body
# Formal arguments c(a) %=>% { print(a) } # Informal arguments list(a=) %=>% { print(a) } # Multiple inputs c(a, b = 2, ...) %=>% { print(c(a, b, ...)) } # ----- JavaScript style of forEach ----- # ### Equivalent JavaScript Code: # LETTERS.forEach((el, ii) => { # console.log('The index of letter ' + el + ' in "x" is: ' + ii); # }); iapply(LETTERS, c(el, ii) %=>% { cat2('The index of letter ', el, ' in ', sQuote('x'), ' is: ', ii) }) -> results
# Formal arguments c(a) %=>% { print(a) } # Informal arguments list(a=) %=>% { print(a) } # Multiple inputs c(a, b = 2, ...) %=>% { print(c(a, b, ...)) } # ----- JavaScript style of forEach ----- # ### Equivalent JavaScript Code: # LETTERS.forEach((el, ii) => { # console.log('The index of letter ' + el + ' in "x" is: ' + ii); # }); iapply(LETTERS, c(el, ii) %=>% { cat2('The index of letter ', el, ' in ', sQuote('x'), ' is: ', ii) }) -> results
Get an element with condition that it must be from a list or vector
lhs %OF% rhs
lhs %OF% rhs
lhs |
the element of candidate |
rhs |
the constraint |
Returns an element of length one that will be from rhs
# C is from LETTERS, therefore returns `C` "C" %OF% LETTERS # `lhs` is not from `rhs`, hence return the first element of LETTERS '9' %OF% LETTERS NULL %OF% LETTERS # When there are multiple elements from `lhs`, select the first that # matches the constraint c('9', "D", "V") %OF% LETTERS
# C is from LETTERS, therefore returns `C` "C" %OF% LETTERS # `lhs` is not from `rhs`, hence return the first element of LETTERS '9' %OF% LETTERS NULL %OF% LETTERS # When there are multiple elements from `lhs`, select the first that # matches the constraint c('9', "D", "V") %OF% LETTERS
This class is inspired by https://cran.r-project.org/package=txtq.
The difference is AbstractQueue
introduce an abstract class that can
be extended and can queue not only text messages, but also arbitrary R
objects, including expressions and environments. All the queue types in this
package inherit this class.
Methods start with @...
are not thread-safe. Most of them are not
used directly by users. However, you might want to override them if you
inherit this abstract class. Methods marked as "(override)" are not
implemented, meaning you are supposed to implement the details. Methods
marked as "(optional)" usually have default alternatives.
initialize(...)
(override)The constructor. Usually three things to do during the process:
1. set get_locker
free_locker
if you don't want to use the
default lockers. 2. set lock file (if using default lockers). 3. call
self$connect(...)
get_locker()
, free_locker()
(optional)Default is NULL
for each methods, and queue uses an internal
private$default_get_locker
and private$default_free_locker
.
These two methods are for customized locker, please
implement these two methods as functions during self$initialization
get_locker
obtains and lock access (exclusive), and free_locker
frees the locker. Once implemented, private$exclusive
will take care
the rest. Type: function; parameters: none; return: none
@get_head()
, @set_head(v)
(override)Get head so that we know where we are in the queue self$@get_head()
should return a integer indicating where we are at the queue
self$@set_head(v)
stores that integer. Parameter v
is always
non-negative, this is guaranteed. Users are not supposed to call these
methods directly, use self$head
and self$head<-
instead.
However, if you inherit this class, you are supposed to override the methods.
@get_total()
, @set_total(v)
(override)Similar to @get_head
and @set_head
, defines the total items
ever stored in the queue. total-head equals current items in the queue.
@inc_total(n=1)
(optional)Increase total, usually this doesn't need to be override, unless you are using files to store total and want to decrease number of file connections
@append_header(msg, ...)
(override)msg
will be vector of strings, separated by "|", containing encoded
headers: ‘time', 'key', 'hash', and 'message'. to decode what’s inside, you
can use self$print_items(stringr::str_split_fixed(msg, '\|', 4))
.
Make sure to return a number, indicating number of items stored.
Unless handled elsewhere, usually return(length(msg))
.
@store_value(value, key)
(override)Defines how to store value. 'key' is unique identifier generated from
time, queue ID, and value. Usually I use it as file name or key ID in
database. value is an arbitrary R object to store. you need to store value
somewhere and return a string that will be passed as 'hash' in
self$restore_value
.
restore_value(hash, key, preserve = FALSE)
(override)Method to restore value from given combination of 'hash' and 'key'.
'hash' is the string returned by @store_value
, and 'key' is the same
as key in @store_value
. preserve is a indicator of whether to
preserve the value for future use. If set to FALSE
, then you are
supposed to free up the resource related to the value. (such as free memory
or disk space)
@log(n = -1, all = FALSE) (override)
get n
items from what you saved to during @append_header
.
n
less equal than 0 means listing all possible items.
If all=TRUE
, return all items (number of rows should equals to
self$total
), including popped items. If all=FALSE
, only
return items in the queue (number of rows is self$count
). The
returned value should be a n x 4
matrix. Usually I use
stringr::str_split_fixed(..., '\|', 4)
. Please see all other
types implemented for example.
@reset(...)
(override)Reset queue, remove all items and reset head, total to be 0.
@clean()
(override)Clean the queue, remove all the popped items.
@validate()
(override)Validate the queue. Stop if the queue is broken.
@connect(con, ...)
(override)Set up connection. Usually should be called at the end of
self$initialization
to connect to a database, a folder, or an
existing queue you should do checks whether the connection is new or it's
an existing queue.
connect(con, ...)
(optional)Thread-safe version. sometimes you need to override this function instead
of @connect
, because private$exclusive
requires lockfile
to exist and to be locked. If you don't have lockers ready, or need to set
lockers during the connection, override this one.
destroy()
(optional)Destroy a queue, free up space and call
delayedAssign('.lockfile', {stop(...)}, assign.env=private)
to raise
error if a destroyed queue is called again later.
Usually don't need to override unless you know what you are doing.
push(value, message='',...)
Function to push an arbitrary R object to queue. message
is a string
giving notes to the pushed item. Usually message is stored with header,
separated from values. The goal is to describe the value. ...
is
passed to @append_header
pop(n = 1, preserve = FALSE)
Pop n
items from the queue. preserve
indicates whether not to
free up the resources, though not always guaranteed.
print_item(item)
, print_items(items)
To decode matrix returned by log()
, returning named list or data frame
with four heads: 'time', 'key', 'hash', and 'message'.
list(n=-1)
List items in the queue, decoded. If n
is less equal than 0, then
list all results. The result is equivalent to
self$print_items(self$log(n))
log(n=-1,all=FALSE)
List items in the queue, encoded. This is used with self$print_items
.
When all=TRUE
, result will list the records ever pushed to the queue
since the last time queue is cleaned. When all=FALSE
, results will be
items in the queue. n
is the number of items.
id
Read-only property. Returns unique ID of current queue.
lockfile
The lock file.
head
Integer, total number of items popped, i.e. inactive items.
total
Total number of items ever pushed to the queue since last cleaned, integer.
count
Integer, read-only, equals to total - head, number of active items in the queue
.id
Don't use directly. Used to store queue ID.
.lockfile
Location of lock file.
lock
Preserve the file lock.
exclusive(expr,...)
Function to make sure the methods are thread-safe
default_get_locker()
Default method to lock a queue
default_free_locker
Default method to free a queue
Action Button but with customized styles
actionButtonStyled( inputId, label, icon = NULL, width = NULL, type = "primary", btn_type = "button", class = "", ... )
actionButtonStyled( inputId, label, icon = NULL, width = NULL, type = "primary", btn_type = "button", class = "", ... )
inputId , label , icon , width , ...
|
passed to |
type |
button type, choices are 'default', 'primary', 'info', 'success', 'warning', and 'danger' |
btn_type |
HTML tag type, either |
class |
additional classes to be added to the button |
'HTML' tags
updateActionButtonStyled
for how to update the button.
# demo('example-actionButtonStyled', package='dipsaus') library(shiny) library(dipsaus) ui <- fluidPage( actionButtonStyled('btn', label = 'Click me', type = 'default'), actionButtonStyled('btn2', label = 'Click me2', type = 'primary') ) server <- function(input, output, session) { btn_types = c('default', 'primary', 'info', 'success', 'warning', 'danger') observeEvent(input$btn, { btype = btn_types[((input$btn-1) %% (length(btn_types)-1)) + 1] updateActionButtonStyled(session, 'btn2', type = btype) }) observeEvent(input$btn2, { updateActionButtonStyled(session, 'btn', disabled = c(FALSE,TRUE)[(input$btn2 %% 2) + 1]) }) } if( interactive() ){ shinyApp(ui, server, options = list(launch.browser=TRUE)) }
# demo('example-actionButtonStyled', package='dipsaus') library(shiny) library(dipsaus) ui <- fluidPage( actionButtonStyled('btn', label = 'Click me', type = 'default'), actionButtonStyled('btn2', label = 'Click me2', type = 'primary') ) server <- function(input, output, session) { btn_types = c('default', 'primary', 'info', 'success', 'warning', 'danger') observeEvent(input$btn, { btype = btn_types[((input$btn-1) %% (length(btn_types)-1)) + 1] updateActionButtonStyled(session, 'btn2', type = btype) }) observeEvent(input$btn2, { updateActionButtonStyled(session, 'btn', disabled = c(FALSE,TRUE)[(input$btn2 %% 2) + 1]) }) } if( interactive() ){ shinyApp(ui, server, options = list(launch.browser=TRUE)) }
If key is missing, it'll be created, otherwise ignored or overwritten.
add_to_session( session, key = "rave_id", val = paste(sample(c(letters, LETTERS, 0:9), 20), collapse = ""), override = FALSE )
add_to_session( session, key = "rave_id", val = paste(sample(c(letters, LETTERS, 0:9), 20), collapse = ""), override = FALSE )
session |
'Shiny' session |
key |
character, key to store |
val |
value to store |
override |
if key exists, whether to overwrite its value |
If session is shiny session, returns current value stored in
session, otherwise returns NULL
Convert functions to pipe-friendly functions
as_pipe( x, ..., call, arg_name, .name = arg_name, .env = parent.frame(), .quoted = FALSE )
as_pipe( x, ..., call, arg_name, .name = arg_name, .env = parent.frame(), .quoted = FALSE )
x |
R object as input |
... |
default arguments explicitly display in the returned function |
call |
a function call, or the function itself |
arg_name |
argument name to be varied. This argument will be the first argument in the new function so it's pipe-friendly. |
.name |
new argument name; default is the same as |
.env |
executing environment |
.quoted |
whether |
If x
is missing, returns a function that takes one argument,
otherwise run the function with given x
# modify a function call vary_title <- as_pipe(call = plot(1:10, 1:10), pch = 16, arg_name = 'main', .name = 'title') vary_title # vary_title is pipe-friendly with `pch` default 16 vary_title(title = 'My Title') # `pch` is explicit vary_title(title = 'My Title', pch = 1) # other variables are implicit vary_title(title = 'My Title', type = 'l') # modify a function f <- function(b = 1, x){ b + x } f_pipable <- as_pipe(call = f, arg_name = 'x') f_pipable f_pipable(2) # Advanced use # Set option dipsaus.debug.as_pipe=TRUE to debug options("dipsaus.debug.as_pipe" = TRUE) # Both `.(z)` and `z` work image2 <- as_pipe(call = image( x = seq(0, 1, length.out = nrow(z)), y = 1:ncol(z), z = matrix(1:16, 4), xlab = "Time", ylab = "Freq", main = "Debug" ), arg_name = 'z') # main can be overwritten image2(matrix(1:50, 5), main = "Production") # reset debug option options("dipsaus.debug.as_pipe" = FALSE)
# modify a function call vary_title <- as_pipe(call = plot(1:10, 1:10), pch = 16, arg_name = 'main', .name = 'title') vary_title # vary_title is pipe-friendly with `pch` default 16 vary_title(title = 'My Title') # `pch` is explicit vary_title(title = 'My Title', pch = 1) # other variables are implicit vary_title(title = 'My Title', type = 'l') # modify a function f <- function(b = 1, x){ b + x } f_pipable <- as_pipe(call = f, arg_name = 'x') f_pipable f_pipable(2) # Advanced use # Set option dipsaus.debug.as_pipe=TRUE to debug options("dipsaus.debug.as_pipe" = TRUE) # Both `.(z)` and `z` work image2 <- as_pipe(call = image( x = seq(0, 1, length.out = nrow(z)), y = 1:ncol(z), z = matrix(1:16, 4), xlab = "Time", ylab = "Freq", main = "Debug" ), arg_name = 'z') # main can be overwritten image2(matrix(1:50, 5), main = "Production") # reset debug option options("dipsaus.debug.as_pipe" = FALSE)
Ask a question and read from the terminal in interactive scenario
ask_or_default(..., default = "", end = "", level = "INFO")
ask_or_default(..., default = "", end = "", level = "INFO")
... , end , level
|
passed to |
default |
default value to return in case of blank input |
The prompt string will ask a question, providing defaults. Users need to enter the answer. If the answer is blank (no space), then returns the default, otherwise returns the user input.
This can only be used in an interactive
session.
A character from the user's input, or the default value. See details.
if(interactive()){ ask_or_default('What is the best programming language?', default = 'PHP') }
if(interactive()){ ask_or_default('What is the best programming language?', default = 'PHP') }
Ask a question and read from the terminal in interactive scenario
ask_yesno( ..., end = "", level = "INFO", error_if_canceled = TRUE, use_rs = TRUE, ok = "Yes", cancel = "No", rs_title = "Yes or No:" )
ask_yesno( ..., end = "", level = "INFO", error_if_canceled = TRUE, use_rs = TRUE, ok = "Yes", cancel = "No", rs_title = "Yes or No:" )
... , end , level
|
passed to |
error_if_canceled |
raise error if canceled |
use_rs |
whether to use |
ok |
button label for yes |
cancel |
button label for no |
rs_title |
message title if 'RStudio' question box pops up. |
The prompt string will ask for an yes or no question. Users need to enter "y", "yes" for yes, "n", "no" or no, and "c" for cancel (case-insensitive).
This can only be used in an interactive
session.
logical or NULL
or raise an error. If "yes" is entered,
returns TRUE
; if "no" is entered, returns FALSE
; if "c" is
entered, error_if_canceled=TRUE
will result in an error, otherwise
return NULL
cat2
, readline
,
ask_or_default
if(interactive()){ ask_yesno('Do you know how hard it is to submit an R package and ', 'pass the CRAN checks?') ask_yesno('Can I pass the CRAN check this time?') }
if(interactive()){ ask_yesno('Do you know how hard it is to submit an R package and ', 'pass the CRAN checks?') ask_yesno('Can I pass the CRAN check this time?') }
async_expr
Evaluate expression in async_expr
async(expr)
async(expr)
expr |
R expression |
Apply R expressions in a parallel way
async_expr( .X, .expr, .varname = "x", envir = parent.frame(), .pre_run = NULL, .ncore = future::availableCores(), ... )
async_expr( .X, .expr, .varname = "x", envir = parent.frame(), .pre_run = NULL, .ncore = future::availableCores(), ... )
.X |
a vector or a list to apply evaluation on |
.expr |
R expression, unquoted |
.varname |
variable name representing element of each |
envir |
environment to evaluate expressions |
.pre_run |
expressions to be evaluated before looping. |
.ncore |
number of CPU cores |
... |
passed to |
async_expr
uses lapply
and future::future
internally.
Within each loop, an item in ".X"
will be assigned to variable "x"
(defined by ".varname"
) and enter the evaluation. During the evaluation,
function async
is provided. Expressions within async
will be
evaluated in another session, otherwise will be evaluated in current session.
Below is the workflow:
Run .pre_run
For i
in seq_along(.X)
:
1. Assign x
with .X[[i]]
, variable name x
is
defined by .varname
2. Evaluate expr
in current session.
a. If async
is not called, return evaluated expr
b. If async(aync_expr)
is called, evaluate aync_expr
in another session, and return the evaluation results if aync_expr
a list whose length equals to .X
. The value of each item
returned depends on whether async
is called. See details for workflow.
future.apply::future_lapply
Wrapper for future.apply::future_lapply
async_flapply(X, FUN, ...)
async_flapply(X, FUN, ...)
X , FUN , ...
|
passing to |
This function has been deprecated. Please use
lapply_callr
instead.
async_works( X, FUN, ..., .globals = NULL, .name = "Untitled", .rs = FALSE, .wait = TRUE, .chunk_size = Inf, .nworkers = future::availableCores(), .simplify = FALSE, .quiet = FALSE, .log )
async_works( X, FUN, ..., .globals = NULL, .name = "Untitled", .rs = FALSE, .wait = TRUE, .chunk_size = Inf, .nworkers = future::availableCores(), .simplify = FALSE, .quiet = FALSE, .log )
X |
vector or list to be applied |
FUN |
function with the first argument to be each element of |
... |
further arguments to be passed to |
.globals |
global variables to be evaluated in |
.name |
job names, used if backed by |
.rs |
whether to use |
.wait |
whether to wait for the results |
.chunk_size |
used only when |
.nworkers |
number of workers at a time |
.simplify |
whether to simplify the results, i.e. merge list of results to vectors or arrays |
.quiet |
whether to suppress the printing messages |
.log |
internally used |
Unlike future
package, where the global variables can be
automatically detected, async_works
require users to specify global
variables explicitly via .globals
async_works
is almost surely slower than future.apply
packages.
However, it provides a functionality that future.apply
can hardly
achieve: being non-block. When setting .wait=FALSE
, the process will
run in the background, and one may run as many of these tasks as they want.
This is especially useful when large data generating process occurs (
such as read in from a file, process, generate summarizing reports).
If .wait=TRUE
, returns the applied results of FUN
on
each of X
. The result types depend on .simplify
(compare
the difference between lapply
and sapply
). If
.wait=FALSE
, then returns a function that can check the result. The
function takes timeout
argument that blocks the session at
most timeout
seconds waiting for the results. See examples.
## Not run: # requires a sub-process to run the code # Basic usage a <- 1 async_works(1:10, function(ii){ ii + a # sub-process don't know a, hence must pass a as globals }, .globals = list(a = a)) # non-blocking case system.time({ check <- async_works(1:10, function(ii){ # simulating process, run run run Sys.sleep(ii) Sys.getpid() }, .wait = FALSE) }) # check the results res <- check(timeout = 0.1) attr(res, 'resolved') # whether it's resolved # block the session waiting for the results res <- check(timeout = Inf) attr(res, 'resolved') ## End(Not run)
## Not run: # requires a sub-process to run the code # Basic usage a <- 1 async_works(1:10, function(ii){ ii + a # sub-process don't know a, hence must pass a as globals }, .globals = list(a = a)) # non-blocking case system.time({ check <- async_works(1:10, function(ii){ # simulating process, run run run Sys.sleep(ii) Sys.getpid() }, .wait = FALSE) }) # check the results res <- check(timeout = 0.1) attr(res, 'resolved') # whether it's resolved # block the session waiting for the results res <- check(timeout = Inf) attr(res, 'resolved') ## End(Not run)
Get attached package names in current session (Internally used)
attached_packages(include_base = FALSE)
attached_packages(include_base = FALSE)
include_base |
whether to include base packages |
characters, package names that are attached in current session
Save "Base64" Data to Images
base64_to_image(data, path)
base64_to_image(data, path)
data |
characters, encoded "Base64" data for images |
path |
file path to save to |
Absolute path of the saved file
Decode "Base64" data to its generating characters
base64_to_string(what)
base64_to_string(what)
what |
characters, encoded "Base64" data |
String
input <- "The quick brown fox jumps over the lazy dog" # Base64 encode what <- base64enc::base64encode(what = charToRaw(input)) # Base64 decode base64_to_string(what)
input <- "The quick brown fox jumps over the lazy dog" # Base64 encode what <- base64enc::base64encode(what = charToRaw(input)) # Base64 decode base64_to_string(what)
Compatible with results from package 'base64url'
,
but implemented with package 'base64enc'
. I simply do not like it
when I have to depend on two packages that can achieve the same goal.
This implementation is slower. If you have 'base64url'
installed,
please use that version.
base64_urlencode(x) base64_urldecode(x)
base64_urlencode(x) base64_urldecode(x)
x |
character vector to encode or decode |
character vector of the same length as x
x = "plain text" encoded = base64_urlencode(x) decoded = base64_urldecode(encoded) print(encoded) print(decoded)
x = "plain text" encoded = base64_urlencode(x) decoded = base64_urldecode(encoded) print(encoded) print(decoded)
Provides five methods to baseline an array and calculate contrast.
baseline_array( x, along_dim, baseline_indexpoints, unit_dims = seq_along(dim(x))[-along_dim], method = c("percentage", "sqrt_percentage", "decibel", "zscore", "sqrt_zscore", "subtract_mean") )
baseline_array( x, along_dim, baseline_indexpoints, unit_dims = seq_along(dim(x))[-along_dim], method = c("percentage", "sqrt_percentage", "decibel", "zscore", "sqrt_zscore", "subtract_mean") )
x |
array (tensor) to calculate contrast |
along_dim |
integer range from 1 to the maximum dimension of |
baseline_indexpoints |
integer vector, which index points are counted
into baseline window? Each index ranges from 1 to |
unit_dims |
integer vector, baseline unit: see Details. |
method |
character, baseline method options are:
|
Consider a scenario where we want to baseline a bunch of signals recorded
from different locations. For each location, we record n
sessions.
For each session, the signal is further decomposed into frequency-time
domain. In this case, we have the input x
in the following form:
Now we want to calibrate signals for each session, frequency and location using the first 100 time points as baseline points, then the code will be
along_dim=3
is dimension of time, in this case, it's the
third dimension of x
. baseline_indexpoints=1:100
, meaning
the first 100 time points are used to calculate baseline.
unit_dims
defines the unit signal. Its value c(1,2,4)
means the unit signal is per session (first dimension), per frequency
(second) and per location (fourth).
In some other cases, we might want to calculate baseline across frequencies
then the unit signal is , i.e. signals that share the
same session and location also share the same baseline. In this case,
we assign
unit_dims=c(1,4)
.
There are five baseline methods. They fit for different types of data.
Denote is an unit signal,
is its baseline slice. Then
these baseline methods are:
"percentage"
"sqrt_percentage"
"decibel"
"zscore"
"sqrt_zscore"
Contrast array with the same dimension as x
.
library(dipsaus) set.seed(1) # Generate sample data dims = c(10,20,30,2) x = array(rnorm(prod(dims))^2, dims) # Set baseline window to be arbitrary 10 timepoints baseline_window = sample(30, 10) # ----- baseline percentage change ------ # Using base functions re1 <- aperm(apply(x, c(1,2,4), function(y){ m <- mean(y[baseline_window]) (y/m - 1) * 100 }), c(2,3,1,4)) # Using dipsaus re2 <- baseline_array(x, 3, baseline_window, c(1,2,4), method = 'percentage') # Check different, should be very tiny (double precisions) range(re2 - re1) # Check speed for large dataset if(interactive()){ dims = c(200,20,300,2) x = array(rnorm(prod(dims))^2, dims) # Set baseline window to be arbitrary 10 timepoints baseline_window = seq_len(100) f1 <- function(){ aperm(apply(x, c(1,2,4), function(y){ m <- mean(y[baseline_window]) (y/m - 1) * 100 }), c(2,3,1,4)) } f2 <- function(){ # equivalent as bl = x[,,baseline_window, ] # baseline_array(x, along_dim = 3, baseline_indexpoints = baseline_window, unit_dims = c(1,2,4), method = 'sqrt_percentage') } microbenchmark::microbenchmark(f1(), f2(), times = 3L) }
library(dipsaus) set.seed(1) # Generate sample data dims = c(10,20,30,2) x = array(rnorm(prod(dims))^2, dims) # Set baseline window to be arbitrary 10 timepoints baseline_window = sample(30, 10) # ----- baseline percentage change ------ # Using base functions re1 <- aperm(apply(x, c(1,2,4), function(y){ m <- mean(y[baseline_window]) (y/m - 1) * 100 }), c(2,3,1,4)) # Using dipsaus re2 <- baseline_array(x, 3, baseline_window, c(1,2,4), method = 'percentage') # Check different, should be very tiny (double precisions) range(re2 - re1) # Check speed for large dataset if(interactive()){ dims = c(200,20,300,2) x = array(rnorm(prod(dims))^2, dims) # Set baseline window to be arbitrary 10 timepoints baseline_window = seq_len(100) f1 <- function(){ aperm(apply(x, c(1,2,4), function(y){ m <- mean(y[baseline_window]) (y/m - 1) * 100 }), c(2,3,1,4)) } f2 <- function(){ # equivalent as bl = x[,,baseline_window, ] # baseline_array(x, along_dim = 3, baseline_indexpoints = baseline_window, unit_dims = c(1,2,4), method = 'sqrt_percentage') } microbenchmark::microbenchmark(f1(), f2(), times = 3L) }
Evaluate expression and captures output as characters, then concatenate as one single string.
capture_expr(expr, collapse = "\n", type = c("output", "message"), ...)
capture_expr(expr, collapse = "\n", type = c("output", "message"), ...)
expr |
R expression |
collapse |
character to concatenate outputs |
type , ...
|
passed to |
Character of length 1: output captured by
capture.output
x <- data.frame(a=1:10) x_str <- capture_expr({ print(x) }) x_str cat(x_str)
x <- data.frame(a=1:10) x_str <- capture_expr({ print(x) }) x_str cat(x_str)
Color Output
cat2( ..., level = "DEBUG", print_level = FALSE, file = "", sep = " ", fill = FALSE, labels = NULL, append = FALSE, end = "\n", pal = list(DEBUG = "grey60", INFO = "#1d9f34", WARNING = "#ec942c", ERROR = "#f02c2c", FATAL = "#763053", DEFAULT = "grey60"), use_cli = TRUE, bullet = "auto" )
cat2( ..., level = "DEBUG", print_level = FALSE, file = "", sep = " ", fill = FALSE, labels = NULL, append = FALSE, end = "\n", pal = list(DEBUG = "grey60", INFO = "#1d9f34", WARNING = "#ec942c", ERROR = "#f02c2c", FATAL = "#763053", DEFAULT = "grey60"), use_cli = TRUE, bullet = "auto" )
... |
to be printed |
level |
'DEBUG', 'INFO', 'WARNING', 'ERROR', or 'FATAL' (total 5 levels) |
print_level |
if true, prepend levels before messages |
file , sep , fill , labels , append
|
pass to |
end |
character to append to the string |
pal |
a named list defining colors see details |
use_cli |
logical, whether to use package 'cli' |
bullet |
character, if use 'cli', which symbol to show. see
|
There are five levels of colors by default: 'DEBUG', 'INFO', 'WARNING', 'ERROR',
or FATAL. Default colors are: 'DEBUG' (grey60
), 'INFO' (#1d9f34
), 'WARNING'
(#ec942c
), 'ERROR' (#f02c2c
), 'FATAL' (#763053
) and
'DEFAULT' (#000000
, black). If level is not in preset five levels,
the color will be "default"-black color.
none.
Check If Packages Are Installed, Returns Missing Packages
check_installed_packages( pkgs, libs = base::.libPaths(), auto_install = FALSE, ... )
check_installed_packages( pkgs, libs = base::.libPaths(), auto_install = FALSE, ... )
pkgs |
vector of packages to install |
libs |
paths of libraries |
auto_install |
automatically install packages if missing |
... |
other parameters for |
package names that are not installed
Function to clear all elements within environment
clear_env(env, ...)
clear_env(env, ...)
env |
environment to clean, can be an R environment, or a
|
... |
ignored |
env = new.env() env$a = 1 print(as.list(env)) clear_env(env) print(as.list(env))
env = new.env() env$a = 1 print(as.list(env)) clear_env(env) print(as.list(env))
Convert color to Hex string
col2hexStr(col, alpha = NULL, prefix = "#", ...)
col2hexStr(col, alpha = NULL, prefix = "#", ...)
col |
character or integer indicating color |
alpha |
|
prefix |
character, default is |
... |
passing to |
col2hexStr
converts colors such as 1, 2, 3, "red", "blue", ... into
hex strings that can be easily recognized by 'HTML', 'CSS' and 'JavaScript'.
Internally this function uses adjustcolor
with two differences:
the returned hex string does not contain alpha value if alpha
is NULL
;
the leading prefix "#" can be customized
characters containing the hex value of each color. See details
col2hexStr(1, prefix = '0x') # "0x000000" col2hexStr('blue') # "#0000FF" # Change default palette, see "grDevices::colors()" grDevices::palette(c('orange3', 'skyblue1')) col2hexStr(1) # Instead of #000000, #CD8500
col2hexStr(1, prefix = '0x') # "0x000000" col2hexStr('blue') # "#0000FF" # Change default palette, see "grDevices::colors()" grDevices::palette(c('orange3', 'skyblue1')) col2hexStr(1) # Instead of #000000, #CD8500
Collapse Sensors And Calculate Summations/Mean
collapse(x, keep, average = FALSE)
collapse(x, keep, average = FALSE)
x |
A numeric multi-mode tensor (array), without |
keep |
Which dimension to keep |
average |
collapse to sum or mean |
a collapsed array with values to be mean or summation along collapsing dimensions
# Example 1 x = matrix(1:16, 4) # Keep the first dimension and calculate sums along the rest collapse(x, keep = 1) rowSums(x) # Should yield the same result # Example 2 x = array(1:120, dim = c(2,3,4,5)) result = collapse(x, keep = c(3,2)) compare = apply(x, c(3,2), sum) sum(abs(result - compare)) # The same, yield 0 or very small number (1e-10) # Example 3 (performance) # Small data, no big difference, even slower x = array(rnorm(240), dim = c(4,5,6,2)) microbenchmark::microbenchmark( result = collapse(x, keep = c(3,2)), compare = apply(x, c(3,2), sum), times = 1L, check = function(v){ max(abs(range(do.call('-', v)))) < 1e-10 } ) # large data big difference x = array(rnorm(prod(300,200,105)), c(300,200,105,1)) microbenchmark::microbenchmark( result = collapse(x, keep = c(3,2)), compare = apply(x, c(3,2), sum), times = 1L , check = function(v){ max(abs(range(do.call('-', v)))) < 1e-10 })
# Example 1 x = matrix(1:16, 4) # Keep the first dimension and calculate sums along the rest collapse(x, keep = 1) rowSums(x) # Should yield the same result # Example 2 x = array(1:120, dim = c(2,3,4,5)) result = collapse(x, keep = c(3,2)) compare = apply(x, c(3,2), sum) sum(abs(result - compare)) # The same, yield 0 or very small number (1e-10) # Example 3 (performance) # Small data, no big difference, even slower x = array(rnorm(240), dim = c(4,5,6,2)) microbenchmark::microbenchmark( result = collapse(x, keep = c(3,2)), compare = apply(x, c(3,2), sum), times = 1L, check = function(v){ max(abs(range(do.call('-', v)))) < 1e-10 } ) # large data big difference x = array(rnorm(prod(300,200,105)), c(300,200,105,1)) microbenchmark::microbenchmark( result = collapse(x, keep = c(3,2)), compare = apply(x, c(3,2), sum), times = 1L , check = function(v){ max(abs(range(do.call('-', v)))) < 1e-10 })
Compound input that combines and extends shiny inputs
compoundInput2( inputId, label = "Group", components = shiny::tagList(), initial_ncomp = 1, min_ncomp = 0, max_ncomp = 10, value = NULL, label_color = NA, max_height = NULL, ... )
compoundInput2( inputId, label = "Group", components = shiny::tagList(), initial_ncomp = 1, min_ncomp = 0, max_ncomp = 10, value = NULL, label_color = NA, max_height = NULL, ... )
inputId |
character, shiny input ID |
label |
character, will show on each groups |
components |
'HTML' tags that defines and combines HTML components within groups |
initial_ncomp |
numeric initial number of groups to show, non-negative |
min_ncomp |
minimum number of groups, default is 0, non-negative |
max_ncomp |
maximum number of groups, default is 10, greater or equal
than |
value |
list of lists, initial values of each inputs, see examples. |
label_color |
integer or characters, length of 1 or |
max_height |
maximum height of the widget |
... |
will be ignored |
'HTML' tags
updateCompoundInput2
for how to update inputs
library(shiny); library(dipsaus) compoundInput2( 'input_id', 'Group', div( textInput('text', 'Text Label'), sliderInput('sli', 'Slider Selector', value = 0, min = 1, max = 1) ), label_color = 1:10, value = list( list(text = '1'), # Set text first group to be "1" list(), # no settings for second group list(sli = 0.2) # sli = 0.2 for the third group )) # Source - system.file('demo/example-compountInput2.R', package='dipsaus') # demo('example-compountInput2', package='dipsaus') library(shiny) library(dipsaus) ui <- fluidPage( fluidRow( column( width = 4, compoundInput2( 'compound', 'Group Label', label_color = c(NA,1:9), components = div( textInput('txt', 'Text'), selectInput('sel', 'Select', choices = 1:10, multiple = TRUE), sliderInput('sli', 'Slider', max=1, min=0, val=0.5) ), value = list( list(txt = '1'), # Set text first group to be "1" '', # no settings for second group list(sli = 0.2) # sli = 0.2 for the third group ) ), hr(), actionButton('action', 'Update compound input') ) ) ) server <- function(input, output, session) { observe({ print(input$compound) }) observe({ # Getting specific input at group 1 print(input$compound_txt_1) }) observeEvent(input$action, { updateCompoundInput2( session, 'compound', # Update values for each components value = lapply(1:5, function(ii){ list( txt = sample(LETTERS, 1), sel = sample(1:10, 3), sli = runif(1) ) }), ncomp = NULL, txt = list(label = as.character(Sys.time()))) }) } if( interactive() ){ shinyApp(ui, server, options = list(launch.browser = TRUE)) }
library(shiny); library(dipsaus) compoundInput2( 'input_id', 'Group', div( textInput('text', 'Text Label'), sliderInput('sli', 'Slider Selector', value = 0, min = 1, max = 1) ), label_color = 1:10, value = list( list(text = '1'), # Set text first group to be "1" list(), # no settings for second group list(sli = 0.2) # sli = 0.2 for the third group )) # Source - system.file('demo/example-compountInput2.R', package='dipsaus') # demo('example-compountInput2', package='dipsaus') library(shiny) library(dipsaus) ui <- fluidPage( fluidRow( column( width = 4, compoundInput2( 'compound', 'Group Label', label_color = c(NA,1:9), components = div( textInput('txt', 'Text'), selectInput('sel', 'Select', choices = 1:10, multiple = TRUE), sliderInput('sli', 'Slider', max=1, min=0, val=0.5) ), value = list( list(txt = '1'), # Set text first group to be "1" '', # no settings for second group list(sli = 0.2) # sli = 0.2 for the third group ) ), hr(), actionButton('action', 'Update compound input') ) ) ) server <- function(input, output, session) { observe({ print(input$compound) }) observe({ # Getting specific input at group 1 print(input$compound_txt_1) }) observeEvent(input$action, { updateCompoundInput2( session, 'compound', # Update values for each components value = lapply(1:5, function(ii){ list( txt = sample(LETTERS, 1), sel = sample(1:10, 3), sli = runif(1) ) }), ncomp = NULL, txt = list(label = as.character(Sys.time()))) }) } if( interactive() ){ shinyApp(ui, server, options = list(launch.browser = TRUE)) }
Python-style decorator
decorate_function(orig, decor, ...) lhs %D% rhs
decorate_function(orig, decor, ...) lhs %D% rhs
orig , lhs
|
any function |
decor , rhs
|
decorator function that takes |
... |
passed to |
# Example 1: basic usage # Decorator that prints summary of results and return results itself verbose_summary <- function(...){ summary_args <- list(...) function(f){ function(...){ results <- f(...) print(do.call( summary, c(list(results), summary_args) )) results } } } # runs as.list, but through verbose_summary as_list2 <- decorate_function(as.list, verbose_summary) # run test res <- as_list2(1:3) # will verbose summary identical(res, as.list(1:3)) # Example 2 x <- 1:20 y <- x + rnorm(20) # decorator, add a line with slope 1 with given intercept abline_xy <- function(b){ function(f){ function(...){ f(...) intercept <- get_dots('intercept', 0, ...) abline(a = intercept, b = b) } } } # orig, plot whatever x vs jittered+intercept plot_xy <- function(x, intercept = rnorm(1)){ plot(x, jitter(x, amount = 3) + intercept) } # new function that decorate plot_xy with abline_xy, and # returns the intercept plot_xy2 <- decorate_function(plot_xy, abline_xy, b = 1) # alternatively, you might also want to try plot_xy2 <- plot_xy %D% abline_xy(b = 1) plot_xy2(x = 1:20)
# Example 1: basic usage # Decorator that prints summary of results and return results itself verbose_summary <- function(...){ summary_args <- list(...) function(f){ function(...){ results <- f(...) print(do.call( summary, c(list(results), summary_args) )) results } } } # runs as.list, but through verbose_summary as_list2 <- decorate_function(as.list, verbose_summary) # run test res <- as_list2(1:3) # will verbose summary identical(res, as.list(1:3)) # Example 2 x <- 1:20 y <- x + rnorm(20) # decorator, add a line with slope 1 with given intercept abline_xy <- function(b){ function(f){ function(...){ f(...) intercept <- get_dots('intercept', 0, ...) abline(a = intercept, b = b) } } } # orig, plot whatever x vs jittered+intercept plot_xy <- function(x, intercept = rnorm(1)){ plot(x, jitter(x, amount = 3) + intercept) } # new function that decorate plot_xy with abline_xy, and # returns the intercept plot_xy2 <- decorate_function(plot_xy, abline_xy, b = 1) # alternatively, you might also want to try plot_xy2 <- plot_xy %D% abline_xy(b = 1) plot_xy2(x = 1:20)
Convert Integer Vectors To String
deparse_svec( nums, connect = "-", concatenate = TRUE, collapse = ",", max_lag = 1 )
deparse_svec( nums, connect = "-", concatenate = TRUE, collapse = ",", max_lag = 1 )
nums |
integer vector |
connect |
character used to connect consecutive numbers |
concatenate |
connect strings if there are multiples |
collapse |
if concatenate, character used to connect strings |
max_lag |
defines "consecutive", min = 1 |
strings representing the input vector. For example, c(1, 2, 3)
returns "1-3".
deparse_svec(c(1:10, 15:18))
deparse_svec(c(1:10, 15:18))
Digest R object with source reference removed
digest2(object, ..., keep_source = FALSE)
digest2(object, ..., keep_source = FALSE)
object , ...
|
passed to |
keep_source |
whether to keep the code that generates the object; default is false |
'RStudio' keyboard shortcuts is handy, however, it is non-trivial to set shortcuts that run customized code. The proposing functions allow 10 customized R expressions to be registered. The first five (1 to 5) are interactive shortcuts, the rest five (6 to 10) are non-interactive.
rs_add_insertion_shortcut(which, txt, force = FALSE) rs_add_shortcut(which, expr, force = FALSE, quoted = FALSE) rs_remove_shortcut(which) rs_show_shortcut(which) rs_quick_debug(env = globalenv())
rs_add_insertion_shortcut(which, txt, force = FALSE) rs_add_shortcut(which, expr, force = FALSE, quoted = FALSE) rs_remove_shortcut(which) rs_show_shortcut(which) rs_quick_debug(env = globalenv())
which |
integer from 1 to 10, which keyboard shortcut to edit |
txt |
an insertion/replacement shortcut to add |
force |
whether to remove existing shortcut if the hot-key has been registered |
expr |
expression to run if shortcut is pressed |
quoted |
whether |
env |
environment to debug code; default is global environment |
There are two steps to register an 'RStudio' keyboard shortcut.
1. Please enable the shortcuts by opening
'Tools' > 'Modify Keyboard Shortcuts'
in 'RStudio' menu bar;
search and locate add-in items starting with 'Dipsaus'; register hot-keys
of your choices, and then save. It is recommended that these
keys are 'Alt' + 1
to 'Alt' + 0
. On Apple, 'Alt' is
equivalent to 'option' key.
2. run rs_add_insertion_shortcut
or rs_add_shortcut
to
customize the behaviors of each shortcuts; see Examples.
Function rs_quick_debug
provides quick way to debug a script or
function without messing up the code. The script only works in 'RStudio'.
When executing the quick-debug function, the cursor context will be
automatically resolved and nearest debugging code blocks will be searched
and executed.
To enable this feature, add a line with "# DIPSAUS: DEBUG START"
in
your code, followed by debugging code blocks in comments. The script will
figure it out. Since the 'RStudio' context will be obtained when executing
the function, it is recommended to add this function to your shortcuts.
By default, if the shortcut-1 is unset, this function will be executed.
## Not run: # Need to run in RStudio # Please read the Section 'Details' carefully # -------------------------------------------- # I assume the shortcuts are Alt+1,2,...,9,0, # corresponding to shortcuts 1 - 10 # Adds an insertion to Alt+9 rs_add_insertion_shortcut(9, " %?<-% ", force = TRUE) # restart RStudio and try `Alt+9` # Adds an expression to Alt+2 rs_add_shortcut(2, { expr <- sprintf("system.time({\n%s\n})\n", rstudioapi::selectionGet()$value) cat(expr) eval(parse(text = expr)) }, force = TRUE) # Select any valid R code and press Alt+1 # -------------------------------------------- # run this to set your shortcut (one-time setup) rs_add_shortcut(1, { dipsaus::rs_quick_debug() }) # Add debug feature: insert the following comment anywhere in your code # You may open a new script in the RStudio # DIPSAUS: DEBUG START # message("Debugging...") # a <- 1 # print(a) # message("Finished") # Place your cursor here, press the shortcut key ## End(Not run)
## Not run: # Need to run in RStudio # Please read the Section 'Details' carefully # -------------------------------------------- # I assume the shortcuts are Alt+1,2,...,9,0, # corresponding to shortcuts 1 - 10 # Adds an insertion to Alt+9 rs_add_insertion_shortcut(9, " %?<-% ", force = TRUE) # restart RStudio and try `Alt+9` # Adds an expression to Alt+2 rs_add_shortcut(2, { expr <- sprintf("system.time({\n%s\n})\n", rstudioapi::selectionGet()$value) cat(expr) eval(parse(text = expr)) }, force = TRUE) # Select any valid R code and press Alt+1 # -------------------------------------------- # run this to set your shortcut (one-time setup) rs_add_shortcut(1, { dipsaus::rs_quick_debug() }) # Add debug feature: insert the following comment anywhere in your code # You may open a new script in the RStudio # DIPSAUS: DEBUG START # message("Debugging...") # a <- 1 # print(a) # message("Finished") # Place your cursor here, press the shortcut key ## End(Not run)
A pipe-friendly wrapper of aggregate
when using formula as input.
do_aggregate(x, ...)
do_aggregate(x, ...)
x |
an R object |
... |
other parameters passed to |
Results from aggregate
library(magrittr) data(ToothGrowth) ToothGrowth %>% do_aggregate(len ~ ., mean)
library(magrittr) data(ToothGrowth) ToothGrowth %>% do_aggregate(len ~ ., mean)
A dummy function that literally does nothing
do_nothing(...)
do_nothing(...)
... |
ignored |
Nothing
NULL
values from list or vectorsDrop NULL
values from list or vectors
drop_nulls(x, .invalids = list("is.null"))
drop_nulls(x, .invalids = list("is.null"))
x |
list to check |
.invalids |
a list of functions, or function name. Default is 'is.null'. |
list or vector containing no invalid values
x <- list(NULL,NULL,1,2) drop_nulls(x) # length of 2
x <- list(NULL,NULL,1,2) drop_nulls(x) # length of 2
Evaluate expressions
eval_dirty(expr, env = parent.frame(), data = NULL, quoted = TRUE)
eval_dirty(expr, env = parent.frame(), data = NULL, quoted = TRUE)
expr |
R expression or 'rlang' quo |
env |
environment to evaluate |
data |
dataframe or list |
quoted |
Is the expression quoted? By default, this is |
eval_dirty
uses base::eval()
function to evaluate
expressions. Compare to rlang::eval_tidy
, which won't affect original
environment, eval_dirty
causes changes to the environment. Therefore
if expr
contains assignment, environment will be changed in this case.
the executed results of expr
evaluated with side effects.
env = new.env(); env$a = 1 rlang::eval_tidy(quote({a <- 111}), env = env) print(env$a) # Will be 1. This is because eval_tidy has no side effect eval_dirty(quote({a <- 111}), env) print(env$a) # 111, a is changed # Unquoted case eval_dirty({a <- 222}, env, quoted = FALSE) print(env$a)
env = new.env(); env$a = 1 rlang::eval_tidy(quote({a <- 111}), env = env) print(env$a) # Will be 1. This is because eval_tidy has no side effect eval_dirty(quote({a <- 111}), env) print(env$a) # 111, a is changed # Unquoted case eval_dirty({a <- 222}, env, quoted = FALSE) print(env$a)
Fancy drag and drop file upload for shiny
apps.
fancyFileInput( inputId, label, width = NULL, after_content = "Drag & drop, or button", size = c("s", "m", "l", "xl"), ... )
fancyFileInput( inputId, label, width = NULL, after_content = "Drag & drop, or button", size = c("s", "m", "l", "xl"), ... )
inputId |
the input slot that will be used to access the value |
label |
display label for the control, or NULL for no label. |
width |
the width of the input |
after_content |
tiny content that is to be displayed below the input box |
size |
height of the widget, choices are |
... |
passed to |
See fileInput
library(shiny) library(dipsaus) ui <- basicPage( fancyFileInput('file_input', "Please upload") ) if(interactive()) { shinyApp( ui, server = function(input, output, session){}, options = list(launch.browser = TRUE) ) }
library(shiny) library(dipsaus) ui <- basicPage( fancyFileInput('file_input', "Please upload") ) if(interactive()) { shinyApp( ui, server = function(input, output, session){}, options = list(launch.browser = TRUE) ) }
Speed up covariance calculation for large matrices. The
default behavior is similar cov
. Please remove any NA
prior to calculation.
fastcov2(x, y = NULL, col1, col2, df)
fastcov2(x, y = NULL, col1, col2, df)
x |
a numeric vector, matrix or data frame; a matrix is highly recommended to maximize the performance |
y |
NULL (default) or a vector, matrix or data frame with compatible
dimensions to x; the default is equivalent to |
col1 |
integers indicating the subset (columns) of |
col2 |
integers indicating the subset (columns) of |
df |
a scalar indicating the degrees of freedom; default is
|
A covariance matrix of x
and y
. Note that there is no
NA
handling. Any missing values will lead to NA
in the
resulting covariance matrices.
x <- matrix(rnorm(400), nrow = 100) # Call `cov(x)` to compare fastcov2(x) # Calculate covariance of subsets fastcov2(x, col1 = 1, col2 = 1:2) # Speed comparison x <- matrix(rnorm(100000), nrow = 1000) microbenchmark::microbenchmark( fastcov2 = { fastcov2(x, col1 = 1:50, col2 = 51:100) }, cov = { cov(x[,1:50], x[,51:100]) }, unit = 'ms', times = 10 )
x <- matrix(rnorm(400), nrow = 100) # Call `cov(x)` to compare fastcov2(x) # Calculate covariance of subsets fastcov2(x, col1 = 1, col2 = 1:2) # Speed comparison x <- matrix(rnorm(100000), nrow = 1000) microbenchmark::microbenchmark( fastcov2 = { fastcov2(x, col1 = 1:50, col2 = 51:100) }, cov = { cov(x[,1:50], x[,51:100]) }, unit = 'ms', times = 10 )
fastmap::fastmap
fastmap
provides a key-value store where the keys are strings and the
values are any R objects. It differs from normal environment that
fastmap
avoids memory leak. fastmap2
is a wrapper for fastmap
, which provides several generic
functions such that it has similar behaviors to lists or
environments
fastmap2(missing_default = NULL) ## S3 method for class 'fastmap2' x[[name]] ## S3 method for class 'fastmap2' x$name ## S3 replacement method for class 'fastmap2' x[[name]] <- value ## S3 replacement method for class 'fastmap2' x$name <- value ## S3 method for class 'fastmap2' x[i, j = NULL, ...] ## S3 replacement method for class 'fastmap2' x[i, j = NULL, ...] <- value ## S3 method for class 'fastmap2' names(x) ## S3 method for class 'fastmap2' print(x, ...) ## S3 method for class 'fastmap2' length(x) ## S3 method for class 'fastmap2' as.list(x, recursive = FALSE, sorted = FALSE, ...)
fastmap2(missing_default = NULL) ## S3 method for class 'fastmap2' x[[name]] ## S3 method for class 'fastmap2' x$name ## S3 replacement method for class 'fastmap2' x[[name]] <- value ## S3 replacement method for class 'fastmap2' x$name <- value ## S3 method for class 'fastmap2' x[i, j = NULL, ...] ## S3 replacement method for class 'fastmap2' x[i, j = NULL, ...] <- value ## S3 method for class 'fastmap2' names(x) ## S3 method for class 'fastmap2' print(x, ...) ## S3 method for class 'fastmap2' length(x) ## S3 method for class 'fastmap2' as.list(x, recursive = FALSE, sorted = FALSE, ...)
missing_default |
passed to |
x |
a |
name |
name, or key of the value |
value |
any R object |
i , j
|
vector of names |
... |
passed to other methods |
recursive |
whether to recursively apply |
sorted |
whether to sort names; default is false |
A list of 'fastmap2'
instance
## --------------------------- Basic Usage -------------------------- map <- fastmap2() map$a = 1 map$b = 2 print(map) map[c('a', 'b')] # Alternative way map['a', 'b'] map[c('c', 'd')] <- 3:4 # or map['e', 'f'] <- 5:6 # The order is not guaranteed, unless sort=TRUE as.list(map) as.list(map, sort=TRUE) names(map) length(map) ## ----------------------- NULL value handles ----------------------- map$b <- NULL names(map) # 'b' still exists! as.list(map) # 'b' is NULL, but still there # to remove 'b', you have to use `@remove` method map$`@remove`('b') ## ---------------- Native fastmap::fastmap methods ----------------- # whether map has 'a' map$`@has`('a') # Remove a name from list map$`@remove`('a') # remove all from list map$`@reset`() print(map)
## --------------------------- Basic Usage -------------------------- map <- fastmap2() map$a = 1 map$b = 2 print(map) map[c('a', 'b')] # Alternative way map['a', 'b'] map[c('c', 'd')] <- 3:4 # or map['e', 'f'] <- 5:6 # The order is not guaranteed, unless sort=TRUE as.list(map) as.list(map, sort=TRUE) names(map) length(map) ## ----------------------- NULL value handles ----------------------- map$b <- NULL names(map) # 'b' still exists! as.list(map) # 'b' is NULL, but still there # to remove 'b', you have to use `@remove` method map$`@remove`('b') ## ---------------- Native fastmap::fastmap methods ----------------- # whether map has 'a' map$`@has`('a') # Remove a name from list map$`@remove`('a') # remove all from list map$`@reset`() print(map)
Slightly faster than quantile
with
na.rm=TRUE
. The internal implementation uses the 'C++' function
std::nth_element
, which is significantly faster than base R
implementation when the length of input x
is less than 1e7
.
fastquantile(x, q)
fastquantile(x, q)
x |
numerical vector (integers or double) |
q |
number from 0 to 1 |
Identical to quantile(x, q, na.rm=TRUE)
# create input x with NAs x <- rnorm(10000) x[sample(10000, 10)] <- NA # compute median res <- fastquantile(x, 0.5) res # base method res == quantile(x, 0.5, na.rm = TRUE) res == median(x, na.rm = TRUE) # Comparison microbenchmark::microbenchmark( { fastquantile(x, 0.5) },{ quantile(x, 0.5, na.rm = TRUE) },{ median(x, na.rm = TRUE) } )
# create input x with NAs x <- rnorm(10000) x[sample(10000, 10)] <- NA # compute median res <- fastquantile(x, 0.5) res # base method res == quantile(x, 0.5, na.rm = TRUE) res == median(x, na.rm = TRUE) # Comparison microbenchmark::microbenchmark( { fastquantile(x, 0.5) },{ quantile(x, 0.5, na.rm = TRUE) },{ median(x, na.rm = TRUE) } )
fastmap::fastqueue
A Wrapper for fastmap::fastqueue
fastqueue2(init = 20L, missing_default = NULL) ## S3 method for class 'fastqueue2' x[[i]] ## S3 method for class 'fastqueue2' x[i, j = NULL, ...] ## S3 method for class 'fastqueue2' print(x, ...) ## S3 method for class 'fastqueue2' length(x) ## S3 method for class 'fastqueue2' as.list(x, ...)
fastqueue2(init = 20L, missing_default = NULL) ## S3 method for class 'fastqueue2' x[[i]] ## S3 method for class 'fastqueue2' x[i, j = NULL, ...] ## S3 method for class 'fastqueue2' print(x, ...) ## S3 method for class 'fastqueue2' length(x) ## S3 method for class 'fastqueue2' as.list(x, ...)
init , missing_default
|
passed to |
x |
a |
i , j
|
integer index |
... |
integer indices or passed to other methods |
A list of 'fastqueue2'
instance
x <- fastqueue2() # add elements x$madd(1, "b", function(){ "c" }, 4, "5") # print information print(x) # get the second element without changing the queue x[[2]] # remove and get the first element x$remove() # the second item x[[2]] # first two items in a list x[c(1,2)] print(x) as.list(x)
x <- fastqueue2() # add elements x$madd(1, "b", function(){ "c" }, 4, "5") # print information print(x) # get the second element without changing the queue x[[2]] # remove and get the first element x$remove() # the second item x[[2]] # first two items in a list x[c(1,2)] print(x) as.list(x)
Generate Shiny element with arrangement automatically
flex_div(..., ncols = "auto")
flex_div(..., ncols = "auto")
... |
shiny UI elements |
ncols |
number of columns, either |
If multiple numbers of columns are specified,
flex_div
will guess the best size that will be applied.
For button UI, flex_div
automatically add "20px"
on the top margin.
HTML objects
ui <- flex_div( shiny::selectInput('sel', label = 'Select input', choices = '', width = '100%'), shiny::textInput('id2', label = html_asis(' '), width = '100%', value = 'Heights aligned'), actionButtonStyled('ok2', 'Button', width = '100%',), shiny::sliderInput('sl', 'Item 4', min = 1, max = 2, value = 1.5, width = '100%'), shiny::fileInput('aa', 'item 5', width = '100%'), ncols = c(2,3) # Try to assign 2 or 3 items per column ) if(interactive()){ shiny::shinyApp(ui = shiny::fluidPage(shiny::fluidRow(ui)), server = function(input, output, session){}) }
ui <- flex_div( shiny::selectInput('sel', label = 'Select input', choices = '', width = '100%'), shiny::textInput('id2', label = html_asis(' '), width = '100%', value = 'Heights aligned'), actionButtonStyled('ok2', 'Button', width = '100%',), shiny::sliderInput('sl', 'Item 4', min = 1, max = 2, value = 1.5, width = '100%'), shiny::fileInput('aa', 'item 5', width = '100%'), ncols = c(2,3) # Try to assign 2 or 3 items per column ) if(interactive()){ shiny::shinyApp(ui = shiny::fluidPage(shiny::fluidRow(ui)), server = function(input, output, session){}) }
"for-else"
functionProvide Python-style "for-else"
that works as
follows: for each element, execute "for" block, if there is break
while executing "for" block, then just stop and ignore the "else"
statement, otherwise run "else" block.
forelse(x, FUN, ALT_FUN = NULL)
forelse(x, FUN, ALT_FUN = NULL)
x |
iterative R objects such as list, vector, etc. |
FUN |
function that applies to each |
ALT_FUN |
function that takes no argument or other types of R object |
If any FUN
returns anything other than NULL
,
then the function returns the first none NULL
object. If
all x
fed to FUN
return NULL
, then this
function returns ALT_FUN
(if ALT_FUN
is not a function)
or the result of ALT_FUN()
.
# --------------------------- Basic Usage ------------------------------ # 1. ALT_FUN get executed because FUN returns NULL for all items in x forelse( 1:10, function(x){ cat('The input is ', x, end = '\n') if( x > 10) return(x) else return(NULL) }, function(){ cat('ALT_FUN is executed!\n') 'wow' } ) # 2. FUN returns non-NULL object forelse( 1:10, function(x){ cat('The input is ', x, end = '\n') if( x %% 2 == 0 ) return(x) else return(NULL) }, 'wow' ) # --------------------------- Performance ------------------------------ FUN <- function(x){ Sys.sleep(0.01) if( x %% 2 == 0 ) return(x) else return(NULL) } microbenchmark::microbenchmark({ forelse(1:10, FUN, 'wow') }, { y <- unlist(lapply(1:10, FUN)) if(length(y)){ y <- y[[1]] }else{ y <- 'wow' } }, { y <- NULL for(x in 1:10){ y <- FUN(x) } if(is.null(y)){ y <- 'wow' } }, times = 3)
# --------------------------- Basic Usage ------------------------------ # 1. ALT_FUN get executed because FUN returns NULL for all items in x forelse( 1:10, function(x){ cat('The input is ', x, end = '\n') if( x > 10) return(x) else return(NULL) }, function(){ cat('ALT_FUN is executed!\n') 'wow' } ) # 2. FUN returns non-NULL object forelse( 1:10, function(x){ cat('The input is ', x, end = '\n') if( x %% 2 == 0 ) return(x) else return(NULL) }, 'wow' ) # --------------------------- Performance ------------------------------ FUN <- function(x){ Sys.sleep(0.01) if( x %% 2 == 0 ) return(x) else return(NULL) } microbenchmark::microbenchmark({ forelse(1:10, FUN, 'wow') }, { y <- unlist(lapply(1:10, FUN)) if(length(y)){ y <- y[[1]] }else{ y <- 'wow' } }, { y <- NULL for(x in 1:10){ y <- FUN(x) } if(is.null(y)){ y <- 'wow' } }, times = 3)
Defunct Functions in Package dipsaus The functions or variables listed here are no longer part of the package.
get_cpu()
get_cpu()
Please note that this function is not meant to be used in production. It is not meant to be used for highly secured cryptographic purposes.
get_credential( master_password, method = c("get_or_create", "replace", "query"), service = NULL, special_chr = "~`! @#$%^&*()_-+={[}]|:;'<,>.?/", tokenfile = NULL, verbose = FALSE )
get_credential( master_password, method = c("get_or_create", "replace", "query"), service = NULL, special_chr = "~`! @#$%^&*()_-+={[}]|:;'<,>.?/", tokenfile = NULL, verbose = FALSE )
master_password |
a master password that only you know, should have at least 8 characters |
method |
whether to query token map, or to create the password,
choices are |
service |
service name, must only contains letters, digits, equal sign, underscore, comma, dot, dash |
special_chr |
special characters allowed in the password |
tokenfile |
a file containing all the tokens. Warning: if you lose the token book, it is hard (not impossible, but impractical) to restore the passwords |
verbose |
whether to print out service names; default is false |
Please note that this function is not meant to be used in production or anything that requires high security level. This is most likely for my personal use since I am tired of storing the passwords on the cloud or having to buy the services.
The encryption adopts 'sha256'
algorithm provided by
digest
function. To restore a password,
you will need twp components: master_password
, a token book (
tokenfile
). If any of them is missing, then the password is lost.
Please store the token book properly (for example, in 'Dropbox' vault).
The token book could be shared. Anyone who do not have master password will be unlikely to restore the service password. Do not share the master password with anyone other than yourself.
By default, method='get_or_create'
will try to retrieve existing
tokens to generate password. If the token is missing, then a new token
will be generated. The method='replace'
will ignore existing tokens
and directly create a new one.
If method is 'query'
, returns token map; otherwise returns
the password itself
tokenfile <- tempfile() # ---------- Create a password and store the tokens to token book ------ pass1 <- get_credential( master_password = "my password", service = "google.com:my_username", special_chr = "@#$%^&*", tokenfile = tokenfile ) print(pass1) # ---------- Query existing tokens ------ token_params <- get_credential( method = "query", tokenfile = tokenfile, verbose = TRUE ) print(token_params) # ---------- retrieve stored password ---------- pass2 <- get_credential( master_password = "my password", service = "google.com", tokenfile = tokenfile ) identical(pass1, pass2) # Using wrong master password pass3 <- get_credential( master_password = "wrong password", service = "google.com", tokenfile = tokenfile ) identical(pass1, pass3) # ---------- Replace token ---------- # Existing token will be replaced with a new token pass4 <- get_credential( master_password = "my password", method = "replace", service = "google.com", special_chr = "@#$%^&*", tokenfile = tokenfile ) print(pass4) identical(pass1, pass4)
tokenfile <- tempfile() # ---------- Create a password and store the tokens to token book ------ pass1 <- get_credential( master_password = "my password", service = "google.com:my_username", special_chr = "@#$%^&*", tokenfile = tokenfile ) print(pass1) # ---------- Query existing tokens ------ token_params <- get_credential( method = "query", tokenfile = tokenfile, verbose = TRUE ) print(token_params) # ---------- retrieve stored password ---------- pass2 <- get_credential( master_password = "my password", service = "google.com", tokenfile = tokenfile ) identical(pass1, pass2) # Using wrong master password pass3 <- get_credential( master_password = "wrong password", service = "google.com", tokenfile = tokenfile ) identical(pass1, pass3) # ---------- Replace token ---------- # Existing token will be replaced with a new token pass4 <- get_credential( master_password = "my password", method = "replace", service = "google.com", special_chr = "@#$%^&*", tokenfile = tokenfile ) print(pass4) identical(pass1, pass4)
'...'
Get information from '...'
without
evaluating the arguments.
get_dots(..name, ..default = NULL, ...) missing_dots(envir = parent.frame())
get_dots(..name, ..default = NULL, ...) missing_dots(envir = parent.frame())
..name |
character name of the argument |
..default |
R object to return if argument not found |
... |
dots that contains argument |
envir |
R environment |
missing_dots
returns logical vector with lengths matching
with dot lengths. get_dots
returns value corresponding to the name.
# ------------------------ Basic Usage --------------------------- # missing_dots(environment()) is a fixed usage my_function <- function(...){ missing_dots(environment()) } my_function(,) # get_dots plot2 <- function(...){ title = get_dots('main', 'There is no title', ...) plot(...) title } plot2(1:10) plot2(1:10, main = 'Scatter Plot of 1:10') # ------------------------ Comparisons ---------------------------- f1 <- function(...){ get_dots('x', ...) } f2 <- function(...){ list(...)[['x']] } delayedAssign('y', { cat('y is evaluated!') }) # y will not evaluate f1(x = 1, y = y) # y gets evaluated f2(x = 1, y = y) # -------------------- Decorator example -------------------------- ret_range <- function(which_range = 'y'){ function(f){ function(...){ f(...) y_range <- range(get_dots(which_range, 0, ...)) y_range } } } plot_ret_yrange <- plot %D% ret_range('y') plot_ret_yrange(x = 1:10, y = rnorm(10))
# ------------------------ Basic Usage --------------------------- # missing_dots(environment()) is a fixed usage my_function <- function(...){ missing_dots(environment()) } my_function(,) # get_dots plot2 <- function(...){ title = get_dots('main', 'There is no title', ...) plot(...) title } plot2(1:10) plot2(1:10, main = 'Scatter Plot of 1:10') # ------------------------ Comparisons ---------------------------- f1 <- function(...){ get_dots('x', ...) } f2 <- function(...){ list(...)[['x']] } delayedAssign('y', { cat('y is evaluated!') }) # y will not evaluate f1(x = 1, y = y) # y gets evaluated f2(x = 1, y = y) # -------------------- Decorator example -------------------------- ret_range <- function(which_range = 'y'){ function(f){ function(...){ f(...) y_range <- range(get_dots(which_range, 0, ...)) y_range } } } plot_ret_yrange <- plot %D% ret_range('y') plot_ret_yrange(x = 1:10, y = rnorm(10))
Get 'IP' address
get_ip(get_public = NA)
get_ip(get_public = NA)
get_public |
whether to get public 'IP' |
a list of 'IP' addresses
Detect the type of operating system
get_os()
get_os()
The type of current operating system: 'windows'
,
'darwin'
, 'linux'
, 'solaris'
, or otherwise
'unknown'
.
get_os()
get_os()
Get Memory Size
get_ram()
get_ram()
The function get_ram
only supports 'MacOS', 'Windows', and 'Linux'. 'Solaris' or other platforms will return NA
.
Here are the system commands used to detect memory limits:
Uses command 'wmic.exe'
in the 'Windows' system folder. Notice this command-line tool might not exist on all 'Windows' machines. get_ram
will return NA
if it cannot locate the command-line tool.
Uses command 'sysctl'
located at '/usr/sbin/'
or '/sbin/'
. Alternatively, you can edit the environment variable 'PATH'
to include the command-line tools if 'sysctl'
is missing. get_ram
will return NA
if it cannot locate 'sysctl'
.
Uses the file '/proc/meminfo'
, possibly the first entry 'MemTotal'
. If the file is missing or entry 'MemTotal'
cannot be located, get_ram
will return NA
.
System RAM in bytes, or NA
if not supported.
get_ram()
get_ram()
Obtain registered input bindings
getInputBinding(fname, pkg = NULL, envir = parent.frame())
getInputBinding(fname, pkg = NULL, envir = parent.frame())
fname |
input function name, character or quoted expression
such as |
pkg |
(optional), name of package |
envir |
environment to evaluate |
a list containing: 1. 'JavaScript' input binding name; 2. 'R' updating function name
library(dipsaus) # Most recommended usage getInputBinding('compoundInput2', pkg = 'dipsaus') # Other usages getInputBinding('shiny::textInput') getInputBinding(shiny::textInput) getInputBinding(compoundInput2, pkg = 'dipsaus') # Bad usage, raise errors in some cases ## Not run: ## You need to library(shiny), or set envir=asNamespace('shiny'), or pkg='shiny' getInputBinding('textInput') getInputBinding(textInput) # also fails ## Always fails getInputBinding('dipsaus::compoundInput2', pkg = 'dipsaus') ## End(Not run)
library(dipsaus) # Most recommended usage getInputBinding('compoundInput2', pkg = 'dipsaus') # Other usages getInputBinding('shiny::textInput') getInputBinding(shiny::textInput) getInputBinding(compoundInput2, pkg = 'dipsaus') # Bad usage, raise errors in some cases ## Not run: ## You need to library(shiny), or set envir=asNamespace('shiny'), or pkg='shiny' getInputBinding('textInput') getInputBinding(textInput) # also fails ## Always fails getInputBinding('dipsaus::compoundInput2', pkg = 'dipsaus') ## End(Not run)
Create a group of named graphic devices
dev_create(..., env = parent.frame(), attributes = list()) get_dev_attr(which, dev = grDevices::dev.cur(), ifnotfound = NULL)
dev_create(..., env = parent.frame(), attributes = list()) get_dev_attr(which, dev = grDevices::dev.cur(), ifnotfound = NULL)
... |
named expressions to launch devices |
env |
environment to evaluate expressions |
attributes |
named list; names correspond to device names and values are attributes to set to the devices |
which |
which attribute to obtain |
dev |
which device to search for attributes |
ifnotfound |
value to return if attribute is not found |
A list of functions to query, control, and switch between devices
## Not run: ## Unix-specific example # Create multiple named devices, setting attributes to the second graph devs <- dev_create( line = X11(), points = x11(), attributes = list(points = list(pch = 16)) ) # switch to device named "points" devs$dev_which('points') # Plot points, with pch given as preset plot(1:10, pch = get_dev_attr(which = 'pch', ifnotfound = 1)) # switch to "line" device devs$dev_switch('line') plot(1:100, type='l') # Create another group with conflict name dev_another <- dev_create(line = X11()) # Query device name with 'line' dev_another$dev_which('line') # 4 devs$dev_which('line') # 2, doesn't conflict with the new groups dev.list() # close one or more device dev_another$dev_off('line') dev.list() # close all devices devs$dev_off() dev.list() ## End(Not run)
## Not run: ## Unix-specific example # Create multiple named devices, setting attributes to the second graph devs <- dev_create( line = X11(), points = x11(), attributes = list(points = list(pch = 16)) ) # switch to device named "points" devs$dev_which('points') # Plot points, with pch given as preset plot(1:10, pch = get_dev_attr(which = 'pch', ifnotfound = 1)) # switch to "line" device devs$dev_switch('line') plot(1:100, type='l') # Create another group with conflict name dev_another <- dev_create(line = X11()) # Query device name with 'line' dev_another$dev_which('line') # 4 devs$dev_which('line') # 2, doesn't conflict with the new groups dev.list() # close one or more device dev_another$dev_off('line') dev.list() # close all devices devs$dev_off() dev.list() ## End(Not run)
Handler for progress2
to support
progressr::handlers
. See examples for detailed use case
handler_dipsaus_progress( title = getOption("dipsaus.progressr.title", "Progress"), intrusiveness = getOption("progressr.intrusiveness.gui", 1), target = if (is.null(shiny::getDefaultReactiveDomain())) "terminal" else "gui", enable = interactive() || shiny_is_running(), ... )
handler_dipsaus_progress( title = getOption("dipsaus.progressr.title", "Progress"), intrusiveness = getOption("progressr.intrusiveness.gui", 1), target = if (is.null(shiny::getDefaultReactiveDomain())) "terminal" else "gui", enable = interactive() || shiny_is_running(), ... )
title |
default title of |
intrusiveness |
A non-negative scalar on how intrusive (disruptive) the reporter to the user |
target |
where progression updates are rendered |
enable |
whether the progress should be reported |
... |
passed to |
library(progressr) library(shiny) library(future) ## ------------------------------ Setup! ------------------------------- handlers(handler_dipsaus_progress()) # ------------------------------ A simple usage ------------------------ xs <- 1:5 handlers(handler_dipsaus_progress()) with_progress({ p <- progressor(along = xs) y <- lapply(xs, function(x) { p(sprintf("x=%g", x)) Sys.sleep(0.1) sqrt(x) }) }) # ------------------------ A future.apply case ------------------------- plan(sequential) # test it yourself with plan(multisession) handlers(handler_dipsaus_progress()) with_progress({ p <- progressor(along = xs) y <- future.apply::future_lapply(xs, function(x) { p(sprintf("x=%g", x)) Sys.sleep(0.1) sqrt(x) }) }) # ------------------------ A shiny case -------------------------------- ui <- fluidPage( actionButton('ok', 'Run Demo') ) server <- function(input, output, session) { handlers(handler_dipsaus_progress()) make_forked_clusters() observeEvent(input$ok, { with_progress({ p <- progressor(along = 1:100) y <- future.apply::future_lapply(1:100, function(x) { p(sprintf("Input %d|Result %d", x, x+1)) Sys.sleep(1) x+1 }) }) }) } if(interactive()){ shinyApp(ui, server) }
library(progressr) library(shiny) library(future) ## ------------------------------ Setup! ------------------------------- handlers(handler_dipsaus_progress()) # ------------------------------ A simple usage ------------------------ xs <- 1:5 handlers(handler_dipsaus_progress()) with_progress({ p <- progressor(along = xs) y <- lapply(xs, function(x) { p(sprintf("x=%g", x)) Sys.sleep(0.1) sqrt(x) }) }) # ------------------------ A future.apply case ------------------------- plan(sequential) # test it yourself with plan(multisession) handlers(handler_dipsaus_progress()) with_progress({ p <- progressor(along = xs) y <- future.apply::future_lapply(xs, function(x) { p(sprintf("x=%g", x)) Sys.sleep(0.1) sqrt(x) }) }) # ------------------------ A shiny case -------------------------------- ui <- fluidPage( actionButton('ok', 'Run Demo') ) server <- function(input, output, session) { handlers(handler_dipsaus_progress()) make_forked_clusters() observeEvent(input$ok, { with_progress({ p <- progressor(along = 1:100) y <- future.apply::future_lapply(1:100, function(x) { p(sprintf("Input %d|Result %d", x, x+1)) Sys.sleep(1) x+1 }) }) }) } if(interactive()){ shinyApp(ui, server) }
Escape HTML strings so that they will be displayed 'as-is' in websites.
html_asis(s, space = TRUE)
html_asis(s, space = TRUE)
s |
characters |
space |
whether to also escape white space, default is true. |
An R string
ui <- flex_div( shiny::textInput('id', ' ', width = '100%', value = 'Height not aligned'), actionButtonStyled('ok', 'Button1', width = '100%',), shiny::textInput('id2', html_asis(' '), width = '100%', value = 'Heights aligned'), actionButtonStyled('ok2', 'Button2', width = '100%',), ncols = 2 ) if(interactive()){ shiny::shinyApp(ui = shiny::fluidPage(shiny::fluidRow(ui)), server = function(input, output, session){}) }
ui <- flex_div( shiny::textInput('id', ' ', width = '100%', value = 'Height not aligned'), actionButtonStyled('ok', 'Button1', width = '100%',), shiny::textInput('id2', html_asis(' '), width = '100%', value = 'Heights aligned'), actionButtonStyled('ok2', 'Button2', width = '100%',), ncols = 2 ) if(interactive()){ shiny::shinyApp(ui = shiny::fluidPage(shiny::fluidRow(ui)), server = function(input, output, session){}) }
Combine 'HTML' classes to produce nice, clean 'HTML' class
string via combine_html_class
, or to remove a class via
remove_html_class
combine_html_class(...) remove_html_class(target, class)
combine_html_class(...) remove_html_class(target, class)
... |
one or more characters, classes to combine; duplicated classes will be removed |
target |
characters, class list |
class |
one or more characters, classes to be removed from |
A character string of new 'HTML' class
# Combine classes "a b c d e" combine_html_class("a", "b a", c("c", " d", "b"), list("e ", "a")) # Remove class remove_html_class("a b c e", c("b", "c "))
# Combine classes "a b c d e" combine_html_class("a", "b a", c("c", " d", "b"), list("e ", "a")) # Remove class remove_html_class("a b c e", c("b", "c "))
Apply function with an index variable as the second input.
iapply(X, FUN, ..., .method = c("sapply", "lapply", "vapply"))
iapply(X, FUN, ..., .method = c("sapply", "lapply", "vapply"))
X |
a vector (atomic or list) |
FUN |
the function to be applied to each element of |
... |
passed to apply methods |
.method |
method to use, default is |
FUN
will be further passed to the apply methods. Unlike
lapply
, FUN
is expected to have at least two arguments.
The first argument is each element of X
, the second argument is the
index number of the element.
a list or matrix depends on .method
. See lapply
A coarse way to find if a function comes from a package.
is_from_namespace(x, recursive = TRUE)
is_from_namespace(x, recursive = TRUE)
x |
function, environment, language (with environment attached) |
recursive |
whether to recursively search parent environments |
logical true if x
or its environment is
defined in a namespace; returns false if the object is atomic, or defined
in/from global environment, or an empty environment.
is_from_namespace(baseenv()) # TRUE is_from_namespace(utils::read.csv) # TRUE x <- function(){} is_from_namespace(NULL) # FALSE is_from_namespace(x) # FALSE is_from_namespace(emptyenv()) # FALSE # Let environment of `x` be base environment # (exception case) environment(x) <- baseenv() is_from_namespace(x) # TRUE
is_from_namespace(baseenv()) # TRUE is_from_namespace(utils::read.csv) # TRUE x <- function(){} is_from_namespace(NULL) # FALSE is_from_namespace(x) # FALSE is_from_namespace(emptyenv()) # FALSE # Let environment of `x` be base environment # (exception case) environment(x) <- baseenv() is_from_namespace(x) # TRUE
Apply, but in parallel
lapply_async2( x, FUN, FUN.args = list(), callback = NULL, plan = TRUE, future.chunk.size = NULL, future.seed = sample.int(1, n = 1e+05 - 1), ... )
lapply_async2( x, FUN, FUN.args = list(), callback = NULL, plan = TRUE, future.chunk.size = NULL, future.seed = sample.int(1, n = 1e+05 - 1), ... )
x |
vector, list |
FUN |
function to apply on each element of |
FUN.args |
more arguments to feed into |
callback |
function to run after each iteration |
plan |
logical, or character or |
future.chunk.size , future.seed
|
see also |
... |
passed to |
When plan
is logical, FALSE
means use current plan.
If plan=TRUE
, then it equals to plan='multicore'
. For
characters, plan
can be 'multicore'
, 'callr'
,
'sequential'
, 'multisession'
, 'multiprocess'
,
etc. Alternatively, you could pass future plan
objects.
same as
with(FUN.args, lapply(x, function(el){eval(body(FUN))}))
library(future) plan(sequential) # Use sequential plan # 1. Change `plan` to 'multicore', 'multisession', or TRUE to enable # multi-core, but still with progress information # 2. Change plan=FALSE will use current future plan res <- lapply_async2(100:200, function(x){ return(x+1) }, callback = function(e){ sprintf('Input=%d', e) }, plan = 'sequential') # Disable callback message, then the function reduce to # normal `future.apply::future_lapply` res <- lapply_async2(100:200, function(x){ return(x+1) }, callback = NULL, plan = FALSE) if(interactive()) { # PID are different, meaning executing in different sessions lapply_async2(1:4, function(x){ Sys.getpid() }) }
library(future) plan(sequential) # Use sequential plan # 1. Change `plan` to 'multicore', 'multisession', or TRUE to enable # multi-core, but still with progress information # 2. Change plan=FALSE will use current future plan res <- lapply_async2(100:200, function(x){ return(x+1) }, callback = function(e){ sprintf('Input=%d', e) }, plan = 'sequential') # Disable callback message, then the function reduce to # normal `future.apply::future_lapply` res <- lapply_async2(100:200, function(x){ return(x+1) }, callback = NULL, plan = FALSE) if(interactive()) { # PID are different, meaning executing in different sessions lapply_async2(1:4, function(x){ Sys.getpid() }) }
rs_exec
Apply function with rs_exec
lapply_callr( x, fun, ..., .callback = NULL, .globals = list(), .ncores = future::availableCores(), .packages = attached_packages(), .focus_on_console = TRUE, .rs = FALSE, .quiet = FALSE, .name = "", .wait = TRUE )
lapply_callr( x, fun, ..., .callback = NULL, .globals = list(), .ncores = future::availableCores(), .packages = attached_packages(), .focus_on_console = TRUE, .rs = FALSE, .quiet = FALSE, .name = "", .wait = TRUE )
x |
vector or list |
fun |
function |
... |
passed to function, see |
.callback |
a function takes zero, one, or two arguments and should return a string to show in the progress |
.globals |
a named list that |
.ncores |
number of cores to use; only used when |
.packages |
packages to load |
.focus_on_console |
whether to focus on console once finished;
is only used when |
.rs |
whether to create 'RStudio' jobs; default is false |
.quiet |
whether to suppress progress message |
.name |
the name of progress and jobs |
.wait |
whether to wait for the results; default is true, which blocks the main session waiting for results. |
When .wait=TRUE
, returns a list that should be, in most of
the cases, identical to lapply
; when .wait=FALSE
,
returns a function that collects results.
if(interactive()){ lapply_callr(1:3, function(x, a){ c(Sys.getpid(), a, x) }, a = 1) lapply_callr(1:30, function(x) { Sys.sleep(0.1) sprintf("a + x = %d", a + x) }, .globals = list(a = 1), .callback = I, .name = "Test") }
if(interactive()){ lapply_callr(1:3, function(x, a){ c(Sys.getpid(), a, x) }, a = 1) lapply_callr(1:30, function(x) { Sys.sleep(0.1) sprintf("a + x = %d", a + x) }, .globals = list(a = 1), .callback = I, .name = "Test") }
fastmap2
Copy elements to fastmap2
list_to_fastmap2(li, map = NULL)
list_to_fastmap2(li, map = NULL)
li |
a list or an environment |
map |
|
If map
is not NULL
, elements will be added
to map
and return map
, otherwise create a new instance.
fastqueue2
Copy elements to fastqueue2
list_to_fastqueue2(li, queue = NULL)
list_to_fastqueue2(li, queue = NULL)
li |
a list or an environment |
queue |
|
If map
is not NULL
, elements will be added
to map
and return map
, otherwise create a new instance.
A wrapper for 'synchronicity' package, but user can interrupt the lock procedure anytime, and don't have to worry about whether the lock exists or not.
dipsaus_lock(name, timeout = 10, exclusive = TRUE) dipsaus_unlock(name, timeout = 10, exclusive = TRUE) dipsaus_resetlocks(name)
dipsaus_lock(name, timeout = 10, exclusive = TRUE) dipsaus_unlock(name, timeout = 10, exclusive = TRUE) dipsaus_resetlocks(name)
name |
character, the locker's name, must be only letters and digits |
timeout |
numeric, seconds to wait for the locker to lock or unlock |
exclusive |
ignored |
Logical, whether the operation succeed.
# Clear existing locks dipsaus::dipsaus_resetlocks() # unlock to prepare for the example dipsaus_unlock('testlocker', timeout = 0.01) # Create a locker, return TRUE lock_success = dipsaus_lock('testlocker') if(lock_success){ cat2('testlocker has been locked') } # test whether locker has been locked lock_success = dipsaus_lock('testlocker', timeout = 0.01) if(!lock_success){ cat2('attempt to lock testlocker failed') } # unlock dipsaus_unlock('testlocker', timeout = 0.01) # clean up dipsaus::dipsaus_resetlocks()
# Clear existing locks dipsaus::dipsaus_resetlocks() # unlock to prepare for the example dipsaus_unlock('testlocker', timeout = 0.01) # Create a locker, return TRUE lock_success = dipsaus_lock('testlocker') if(lock_success){ cat2('testlocker has been locked') } # test whether locker has been locked lock_success = dipsaus_lock('testlocker', timeout = 0.01) if(!lock_success){ cat2('attempt to lock testlocker failed') } # unlock dipsaus_unlock('testlocker', timeout = 0.01) # clean up dipsaus::dipsaus_resetlocks()
Creates forked clusters. If fails, then switch to alternative
plan (default is "multisession"
).
make_forked_clusters( workers = future::availableCores(), on_failure = getOption("dipsaus.cluster.backup", "sequential"), clean = FALSE, ... )
make_forked_clusters( workers = future::availableCores(), on_failure = getOption("dipsaus.cluster.backup", "sequential"), clean = FALSE, ... )
workers |
positive integer, number of cores to use |
on_failure |
alternative plan to use if failed. This is useful when
forked process is not supported (like 'windows'); default is
|
clean |
whether to reverse the plan on exit. This is useful when use
|
... |
passing to |
This was original designed as a wrapper for
future::plan(future::multicore, ...)
. Forked
clusters are discouraged when running in 'RStudio' because some pointers
in 'RStudio' might be incorrectly handled, causing fork-bombs. However,
forked process also has big advantages over other parallel methods: there
is no data transfer needed, hence its speed is very fast. Many external
pointers can also be shared using forked process. Since version 1.14.0,
unfortunately, forked 'multicore' is banned by future
package by
default, and you usually need to enable it manually. This function provides
a simple way of enable it and plan the future at the same time.
On windows, forked process is not supported, under this situation, the plan
fall back to sequential, which might not be what you want. In such case,
this function provides an alternative strategy that allows you to plan.
You could also always enable the alternative strategy by setting
dipsaus.no.fork
option to true.
The parameter clean
allows you to automatically clean the plan. This
function allows you to reverse back to previous plan automatically once your
function exits. For example, users might have already set up their own plans,
clean=TRUE
allows you to set the plan back to those original plans
once function exit. To use this feature, please make sure this function is
called within another function, and you must collect results before exiting
the outer function.
Current future plan
if(interactive()){ # ------ Basic example library(future) library(dipsaus) # sequential plan("sequential") make_forked_clusters() plan() # multicore, or multisession (on windows) Sys.getpid() # current main session PID value(future({Sys.getpid()})) # sub-process PID, evaluated as multicore # ------ When fork is not supported # reset to default single core strategy plan("sequential") # Disable forked process options("dipsaus.no.fork" = TRUE) options("dipsaus.cluster.backup" = "multisession") # Not fall back to multisession make_forked_clusters() plan() # ------ Auto-clean # reset plan plan("sequential") options("dipsaus.no.fork" = FALSE) options("dipsaus.cluster.backup" = "multisession") # simple case: my_func <- function(){ make_forked_clusters(clean = TRUE) fs <- lapply(1:4, function(i){ future({Sys.getpid()}) }) unlist(value(fs)) } my_func() # The PIDs are different, meaning they ran in other sessions plan() # The plan is sequential, auto reversed strategy # ------ Auto-clean with lapply_async2 my_plan <- plan() # lapply_async2 version of the previous task lapply_async2(1:4, function(i){ Sys.getpid() }) identical(plan(), my_plan) }
if(interactive()){ # ------ Basic example library(future) library(dipsaus) # sequential plan("sequential") make_forked_clusters() plan() # multicore, or multisession (on windows) Sys.getpid() # current main session PID value(future({Sys.getpid()})) # sub-process PID, evaluated as multicore # ------ When fork is not supported # reset to default single core strategy plan("sequential") # Disable forked process options("dipsaus.no.fork" = TRUE) options("dipsaus.cluster.backup" = "multisession") # Not fall back to multisession make_forked_clusters() plan() # ------ Auto-clean # reset plan plan("sequential") options("dipsaus.no.fork" = FALSE) options("dipsaus.cluster.backup" = "multisession") # simple case: my_func <- function(){ make_forked_clusters(clean = TRUE) fs <- lapply(1:4, function(i){ future({Sys.getpid()}) }) unlist(value(fs)) } my_func() # The PIDs are different, meaning they ran in other sessions plan() # The plan is sequential, auto reversed strategy # ------ Auto-clean with lapply_async2 my_plan <- plan() # lapply_async2 version of the previous task lapply_async2(1:4, function(i){ Sys.getpid() }) identical(plan(), my_plan) }
Provides five types of map that fit in different use cases.
session_map(map = fastmap::fastmap()) rds_map(path = tempfile()) text_map(path = tempfile())
session_map(map = fastmap::fastmap()) rds_map(path = tempfile()) text_map(path = tempfile())
map |
a |
path |
directory path where map data should be stored |
There are five types of map implemented. They all inherit class
AbstractMap
. There are several differences in
use case scenarios and they backend implementations.
session_map
A session map takes a fastmap
object. All objects are
stored in current R session. This means you cannot access the map from other
process nor parent process. The goal of this map is to share the data across
different environments and to store global variables, as long as they share
the same map object. If you are looking for maps that can be shared
by different processes, check the rest map types. The closest map type is
rds_map
.
rds_map
An 'RDS' map uses file system to store values. The values are stored
separately in '.rds' files. Compared to session maps, 'RDS' map can be
shared across different R process. It's recommended to store
large files in rds_map
. If the value is not large in RAM,
text_map
is recommended.
text_map
A 'text' map uses file system to store values. Similar to rds_map
,
it can be stored across multiple processes as long as the maps share the
same file directory. However, unlike rds_map
, text_map
the text_map
can only store basic data values, namely atom data types.
The supported types are: numeric, character, vector, list, matrix
It's highly recommended to convert factors to characters. Do NOT use if the
values are functions or environments. The recommended use case scenario
is when the speed is not the major concern, and you want to preserve data
with backward compatibility. Otherwise it's highly recommended to use
rds_map
.
An R6
instance that inherits AbstractMap
# ----------------------Basic Usage ---------------------- # Define a path to your map. path = tempfile() map <- rds_map(path) # Reset map$reset() # Check if the map is corrupted. map$validate() # You have not set any key-value pairs yet. # Let's say two parallel processes (A and B) are sharing this map. # Process A set values map$keys() # Start push # set a normal message map$set(key = 'a', value = 1) # set a large object map$set(key = 'b', value = rnorm(100000)) # set an object with hash of another object map$set(key = 'c', value = 2, signature = list( parameter1 = 123, parameter2 = 124 )) # Check what's in the map from process B mapB <- rds_map(path) mapB$keys() mapB$keys(include_signatures = TRUE) # Number of key-values pairs in the map. mapB$size() # Check if key exists mapB$has(c('1','a', 'c')) # Check if key exists and signature also matches mapB$has('c', signature = list( parameter1 = 123, parameter2 = 124 )) # Signature changed, then return FALSE. This is especially useful when # value is really large and reading the value takes tons of time mapB$has('c', signature = list( parameter1 = 1244444, parameter2 = 124 )) # Destroy the map's files altogether. mapB$destroy() ## Not run: # Once destroyed, validate will raise error mapB$validate() ## End(Not run)
# ----------------------Basic Usage ---------------------- # Define a path to your map. path = tempfile() map <- rds_map(path) # Reset map$reset() # Check if the map is corrupted. map$validate() # You have not set any key-value pairs yet. # Let's say two parallel processes (A and B) are sharing this map. # Process A set values map$keys() # Start push # set a normal message map$set(key = 'a', value = 1) # set a large object map$set(key = 'b', value = rnorm(100000)) # set an object with hash of another object map$set(key = 'c', value = 2, signature = list( parameter1 = 123, parameter2 = 124 )) # Check what's in the map from process B mapB <- rds_map(path) mapB$keys() mapB$keys(include_signatures = TRUE) # Number of key-values pairs in the map. mapB$size() # Check if key exists mapB$has(c('1','a', 'c')) # Check if key exists and signature also matches mapB$has('c', signature = list( parameter1 = 123, parameter2 = 124 )) # Signature changed, then return FALSE. This is especially useful when # value is really large and reading the value takes tons of time mapB$has('c', signature = list( parameter1 = 1244444, parameter2 = 124 )) # Destroy the map's files altogether. mapB$destroy() ## Not run: # Once destroyed, validate will raise error mapB$validate() ## End(Not run)
Modifies the default behavior of the function by adding one environment layer on top of input function. The masked variables are assigned directly to the environment.
mask_function2(f, ..., .list = list())
mask_function2(f, ..., .list = list())
f |
any function |
... , .list
|
name-value pairs to mask the function |
a masked function
a <- 123 f1 <- function(){ a + 1 } f1() # 124 f2 <- mask_function2(f1, a = 1) f2() # a is masked with value 1, return 2 environment(f1) # global env environment(f2) # masked env env <- environment(f2) identical(parent.env(env), environment(f1)) # true env$a # masked variables: a=1
a <- 123 f1 <- function(){ a + 1 } f1() # 124 f2 <- mask_function2(f1, a = 1) f2() # a is masked with value 1, return 2 environment(f1) # global env environment(f2) # masked env env <- environment(f2) identical(parent.env(env), environment(f1)) # true env$a # masked variables: a=1
Recursively match calls and modify arguments
match_calls( call, recursive = TRUE, replace_args = list(), quoted = FALSE, envir = parent.frame(), ... )
match_calls( call, recursive = TRUE, replace_args = list(), quoted = FALSE, envir = parent.frame(), ... )
call |
an |
recursive |
logical, recursively match calls, default is true |
replace_args |
named list of functions, see examples |
quoted |
logical, is |
envir |
which environment should call be evaluated |
... |
other parameters passing to |
A nested call with all arguments matched
library(dipsaus); library(shiny) # In shiny modules, we might want to add ns() to inputIds # In this example, textInput(id) will become textInput(ns(id)) match_calls(lapply(1:20, function(i){ textInput(paste('id_', i), paste('Label ', i)) }), replace_args = list( inputId = function(arg, call){ as.call(list(quote(ns), arg)) } ))
library(dipsaus); library(shiny) # In shiny modules, we might want to add ns() to inputIds # In this example, textInput(id) will become textInput(ns(id)) match_calls(lapply(1:20, function(i){ textInput(paste('id_', i), paste('Label ', i)) }), replace_args = list( inputId = function(arg, call){ as.call(list(quote(ns), arg)) } ))
Calculates mean and standard error of mean
mean_se(x, na.rm = FALSE, se_na_as_zero = na.rm)
mean_se(x, na.rm = FALSE, se_na_as_zero = na.rm)
x |
R numerical object |
na.rm |
whether to remove |
se_na_as_zero |
see |
A named vector containing the mean
and standard error
of mean (ste_mean
).
# Mean should be near 0 (mean of standard normal) # standard error of mean should be near 0.01 mean_se(rnorm(10000))
# Mean should be near 0 (mean of standard normal) # standard error of mean should be near 0.01 mean_se(rnorm(10000))
Get max RAM size This is an experimental function that is designed for non-windows systems
mem_limit2()
mem_limit2()
a list of total free memory.
Create new function that supports 'quasi-quosure' syntax
new_function2( args = alist(), body = { }, env = parent.frame(), quote_type = c("unquoted", "quote", "quo"), quasi_env = parent.frame() )
new_function2( args = alist(), body = { }, env = parent.frame(), quote_type = c("unquoted", "quote", "quo"), quasi_env = parent.frame() )
args |
named list of function formals |
body |
function body expression, supports 'quasi-quosure' syntax |
env |
declare environment of the function |
quote_type |
character, whether |
quasi_env |
where the 'quasi-quosure' should be evaluated, default is parent environment |
An unquoted body expression will be quoted, all the
expressions with 'quasi-quosure' like !!var
will be evaluated
and substituted with the value of var
. For a 'quosure',
quo_squash
will be applied. A quoted
expression will not be substitute, but will be expanded if any
'quasi-quosure' detected
args
must be a list
object, see formals
.
For arguments with no default values, or quoted defaults, use
alist
. An arg=alist(a=)
will result in a
function like function(a){...}
. See examples for more details.
a function
# ------------ standard usage ------------ x <- 1:10 f1 <- new_function2(alist(a=), { print(a + x) }, env = environment()) f1(0) x <- 20:23 f1(0) # result changed as x changed # ------------ 'quasi-quosure' syntax ------------ x <- 1:10 f2 <- new_function2(alist(a=), { print(a + !!x) }) print(f2) f2(0) x <- 20:23 f2(0) # result doesn't change as f2 doesn't depend on x anymore # ------------ argument settings ------------ default <- 123 # default with values pre-specified new_function2(list(a = default)) # function (a = 123){} # default with values unevaluated new_function2(list(a = quote(default))) # function (a = default){} new_function2(alist(a = default)) # missing default new_function2(alist(a = )) # function (a){}
# ------------ standard usage ------------ x <- 1:10 f1 <- new_function2(alist(a=), { print(a + x) }, env = environment()) f1(0) x <- 20:23 f1(0) # result changed as x changed # ------------ 'quasi-quosure' syntax ------------ x <- 1:10 f2 <- new_function2(alist(a=), { print(a + !!x) }) print(f2) f2(0) x <- 20:23 f2(0) # result doesn't change as f2 doesn't depend on x anymore # ------------ argument settings ------------ default <- 123 # default with values pre-specified new_function2(list(a = default)) # function (a = 123){} # default with values unevaluated new_function2(list(a = quote(default))) # function (a = default){} new_function2(alist(a = default)) # missing default new_function2(alist(a = )) # function (a){}
returns the first input with side effects
no_op(.x, .expr, ..., .check_fun = TRUE)
no_op(.x, .expr, ..., .check_fun = TRUE)
.x |
any R object |
.expr |
R expression that produces side effects |
... , .check_fun
|
see 'details' |
no_op
is a pipe-friendly function that takes any values in,
evaluate expressions but still returns input. This is very useful when
you have the same input across multiple functions and you want to use pipes.
.expr
is evaluated with a special object '.'
, you can use
'.'
to represent .x
in .expr
. For example, if
.x=1:100
, then plot(x=seq(0,1,length.out = 100), y=.)
is
equivalent to plot(x=seq(0,1,length.out = 100), y=1:100)
.
.check_fun
checks whether .expr
returns a function, if yes,
then the function is called with argument .x
and ...
The value of .x
library(magrittr) ## 1. Basic usage # Will print('a') and return 'a' no_op('a', print) # Will do nothing and return 'a' because .check_fun is false no_op('a', print, .check_fun = FALSE) # Will print('a') and return 'a' no_op('a', print(.), .check_fun = FALSE) ## 2. Toy example library(graphics) par(mfrow = c(2,2)) x <- rnorm(100) # hist and plot share the same input `rnorm(100)` x %>% # .expr is a function, all ... are passed as other arguments no_op( hist, nclass = 10 ) %>% no_op( plot, x = seq(0,1,length.out = 100) ) %>% # Repeat the previous two plots, but with different syntax no_op({ hist(., nclass = 10) }) %>% no_op({ plot(x = seq(0,1,length.out = 100), y = .) }) %>% # The return statement is ignored no_op({ return(x + 1)}) -> y # x is returned at the end identical(x, y) # TRUE
library(magrittr) ## 1. Basic usage # Will print('a') and return 'a' no_op('a', print) # Will do nothing and return 'a' because .check_fun is false no_op('a', print, .check_fun = FALSE) # Will print('a') and return 'a' no_op('a', print(.), .check_fun = FALSE) ## 2. Toy example library(graphics) par(mfrow = c(2,2)) x <- rnorm(100) # hist and plot share the same input `rnorm(100)` x %>% # .expr is a function, all ... are passed as other arguments no_op( hist, nclass = 10 ) %>% no_op( plot, x = seq(0,1,length.out = 100) ) %>% # Repeat the previous two plots, but with different syntax no_op({ hist(., nclass = 10) }) %>% no_op({ plot(x = seq(0,1,length.out = 100), y = .) }) %>% # The return statement is ignored no_op({ return(x + 1)}) -> y # x is returned at the end identical(x, y) # TRUE
Check if a package is installed
package_installed(pkgs, all = FALSE)
package_installed(pkgs, all = FALSE)
pkgs |
vector of package names |
all |
only returns TRUE if all packages are installed. Default is FALSE. |
logical, if packages are installed or not. If all=TRUE
, return
a logical value of whether all packages a re installed.
# Check if package base and dipsaus are installed package_installed(c('base', 'dipsaus')) # Check if all required packages are installed package_installed(c('base', 'dipsaus'), all = TRUE)
# Check if package base and dipsaus are installed package_installed(c('base', 'dipsaus')) # Check if all required packages are installed package_installed(c('base', 'dipsaus'), all = TRUE)
Parse Text Into Numeric Vectors
parse_svec(text, sep = ",", connect = "-:|", sort = FALSE, unique = TRUE)
parse_svec(text, sep = ",", connect = "-:|", sort = FALSE, unique = TRUE)
text |
string with chunks, e.g. |
sep |
default is ",", character used to separate chunks |
connect |
characters defining connection links for example "1:10" is the same as "1-10" |
sort |
sort the result |
unique |
extract unique elements |
a numeric vector. For example, "1-3" returns c(1, 2, 3)
parse_svec('1-10, 13:15,14-20')
parse_svec('1-10, 13:15,14-20')
This class is designed to persist arbitrary R objects locally
and share across different sessions. The container consists two-level caches.
The first one is session-based, meaning it's only valid under current R
session and will be cleared once the session is shut down. The second is
the persist-level map, which will persist to hard drive and shared across
sessions. See cache
method in 'details'.
initialize(..., backend = rds_map)
The constructor. backend must inherit AbstractMap
, ...
will
be passed to backend$new(...)
. To check available back-ends and their
use cases, see map
.
reset(all = FALSE)
Reset container. If all is set to be true, then reset session-based and hard-drive-based, otherwise only reset session-based container.
destroy(all = FALSE)
destroy the container. Only use it when you want to finalize the container in
reg.finalizer
.
has(key, signature = NULL)
returns a list of true/false (logical) vectors indicating whether keys exist in the container, if signature is used when caching the key-value pairs, then it also checks whether signature matches. This is very important as even if the keys match but signature is wrong, the results will be false.
remove(keys, all = TRUE)
Remove keys in the container. Default is to remove the keys in both levels.
If all=FALSE
, then only remove the key in current session
cache(key, value, signature = NULL, replace = FALSE, persist = FALSE)
key
and signature
together form the unique identifier for the
value. By default signature
is none, but it's very useful when value
if large, or key
is not a string. replace
indicates whether
to force replace the key-value pairs even if the entry exists. If
persist
is true, then the value is stored in hard-disks, otherwise
the value will be deleted once the session is closed.
container = PersistContainer$new(tempfile()) # Reset the container so that values are cleared container$reset(all = TRUE) # Store `1` to 'a' with signature 111 to a non-persist map # returns 1 container$cache(key = 'a', value = 1, signature = 111, persist = FALSE) # Replace 'a' with 3 # returns 3 container$cache(key = 'a', value = 3, signature = 111, persist = TRUE, replace = TRUE) # check if 'a' exists with signature 111 container$has('a', signature = 111) # TRUE # When you only have 'a' but no signature container$has('a') # TRUE # check if 'a' exists with wrong signature 222 container$has('a', signature = 222) # FALSE # Store 'a' with 2 with same signature # will fail and ignore the value (value will not be evaluated if signatured) # Return 2 (Important! use cached values) container$cache(key = 'a', value = { print(123) return(2) }, signature = 111, replace = FALSE) # When no signature is present # If the key exists (no signature provided), return stored value # returns 3 container$cache(key = 'a', value = 4) # replace is TRUE (no signature provided), signature will be some default value container$cache(key = 'a', value = 2, replace = TRUE) # destroy the container to free disk space container$destroy()
container = PersistContainer$new(tempfile()) # Reset the container so that values are cleared container$reset(all = TRUE) # Store `1` to 'a' with signature 111 to a non-persist map # returns 1 container$cache(key = 'a', value = 1, signature = 111, persist = FALSE) # Replace 'a' with 3 # returns 3 container$cache(key = 'a', value = 3, signature = 111, persist = TRUE, replace = TRUE) # check if 'a' exists with signature 111 container$has('a', signature = 111) # TRUE # When you only have 'a' but no signature container$has('a') # TRUE # check if 'a' exists with wrong signature 222 container$has('a', signature = 222) # FALSE # Store 'a' with 2 with same signature # will fail and ignore the value (value will not be evaluated if signatured) # Return 2 (Important! use cached values) container$cache(key = 'a', value = { print(123) return(2) }, signature = 111, replace = FALSE) # When no signature is present # If the key exists (no signature provided), return stored value # returns 3 container$cache(key = 'a', value = 4) # replace is TRUE (no signature provided), signature will be some default value container$cache(key = 'a', value = 2, replace = TRUE) # destroy the container to free disk space container$destroy()
Print Directory Tree
print_directory_tree( target, root = "~", child, dir_only = FALSE, collapse = NULL, ... )
print_directory_tree( target, root = "~", child, dir_only = FALSE, collapse = NULL, ... )
target |
target directory path, relative to |
root |
root directory, default is |
child |
child files in target; is missing, then list all files |
dir_only |
whether to display directory children only |
collapse |
whether to concatenate results as one single string |
... |
pass to |
Characters, print-friendly directory tree.
'Shiny' progress bar, but can run without reactive context
progress2( title, max = 1, ..., quiet = FALSE, session = shiny::getDefaultReactiveDomain(), shiny_auto_close = FALSE, log = NULL )
progress2( title, max = 1, ..., quiet = FALSE, session = shiny::getDefaultReactiveDomain(), shiny_auto_close = FALSE, log = NULL )
title |
character, task description |
max |
maximum number of items in the queue |
... |
passed to |
quiet |
suppress console output, ignored in shiny context. |
session |
'shiny' session, default is current reactive domain |
shiny_auto_close |
logical, automatically close 'shiny' progress bar
once current observer is over. Default is |
log |
function when running locally, default is |
A list of functions:
inc(detail, message = NULL, amount = 1, ...)
Increase progress bar by amount
(default is 1).
close()
Close the progress
reset(detail = '', message = '', value = 0)
Reset the progress to value
(default is 0), and reset information
get_value()
Get current progress value
is_closed()
Returns logical value if the progress is closed or not.
progress <- progress2('Task A', max = 2) progress$inc('Detail 1') progress$inc('Detail 2') progress$close() # Check if progress is closed progress$is_closed() # ------------------------------ Shiny Example ------------------------------ library(shiny) library(dipsaus) ui <- fluidPage( actionButtonStyled('do', 'Click Here', type = 'primary') ) server <- function(input, output, session) { observeEvent(input$do, { updateActionButtonStyled(session, 'do', disabled = TRUE) progress <- progress2('Task A', max = 10, shiny_auto_close = TRUE) lapply(1:10, function(ii){ progress$inc(sprintf('Detail %d', ii)) Sys.sleep(0.2) }) updateActionButtonStyled(session, 'do', disabled = FALSE) }) } if(interactive()){ shinyApp(ui, server) }
progress <- progress2('Task A', max = 2) progress$inc('Detail 1') progress$inc('Detail 2') progress$close() # Check if progress is closed progress$is_closed() # ------------------------------ Shiny Example ------------------------------ library(shiny) library(dipsaus) ui <- fluidPage( actionButtonStyled('do', 'Click Here', type = 'primary') ) server <- function(input, output, session) { observeEvent(input$do, { updateActionButtonStyled(session, 'do', disabled = TRUE) progress <- progress2('Task A', max = 10, shiny_auto_close = TRUE) lapply(1:10, function(ii){ progress$inc(sprintf('Detail %d', ii)) Sys.sleep(0.2) }) updateActionButtonStyled(session, 'do', disabled = FALSE) }) } if(interactive()){ shinyApp(ui, server) }
Register customized input to enable support by compound input
registerInputBinding( fname, pkg, shiny_binding, update_function = NULL, quiet = FALSE )
registerInputBinding( fname, pkg, shiny_binding, update_function = NULL, quiet = FALSE )
fname |
character, function name, such as |
pkg |
character, package name, like |
shiny_binding |
character, 'JavaScript' binding name.See examples |
update_function |
character, update function such as |
quiet |
logical, whether to suppress warnings |
a list of binding functions, one is 'JavaScript' object key in
Shiny.inputBindings
, the other is 'shiny' update function in R end.
# register shiny textInput registerInputBinding('textInput', 'shiny', 'shiny.textInput', 'shiny::updateTextInput') # Register shiny actionLink # In "Shiny.inputbindings", the binding name is "shiny.actionButtonInput", # Shiny update function is "shiny::updateActionButton" registerInputBinding('actionLink', 'shiny', 'shiny.actionButtonInput', 'shiny::updateActionButton')
# register shiny textInput registerInputBinding('textInput', 'shiny', 'shiny.textInput', 'shiny::updateTextInput') # Register shiny actionLink # In "Shiny.inputbindings", the binding name is "shiny.actionButtonInput", # Shiny update function is "shiny::updateActionButton" registerInputBinding('actionLink', 'shiny', 'shiny.actionButtonInput', 'shiny::updateActionButton')
Utilize 'RStudio' functions to restart, if running without
'RStudio', use package startup
(not included in this library) instead.
restart_session()
restart_session()
Get 'RStudio' active project
rs_active_project(...)
rs_active_project(...)
... |
passed to |
If 'RStudio' is running and current project is not none, return
project name, otherwise return NA
Verify 'RStudio' version
rs_avail(version_needed = "1.3", child_ok = FALSE, shiny_ok = FALSE)
rs_avail(version_needed = "1.3", child_ok = FALSE, shiny_ok = FALSE)
version_needed |
minimum version required |
child_ok |
check if the current R process is a child process of the main RStudio session. |
shiny_ok |
if set false, then check if 'Shiny' is running, return false
if shiny reactive domain is not |
whether 'RStudio' is running and its version is above the required
Use 'RStudio' to open and edit files
rs_edit_file(path, create = TRUE)
rs_edit_file(path, create = TRUE)
path |
path to file |
create |
whether to create if path is not found; default is true |
Opens the file pointing to path
to edit, and returns the
path
Utilizes 'RStudio' job scheduler if correct environment is
detected, otherwise call system command via Rscript
rs_exec( expr, name = "Untitled", quoted = FALSE, rs = TRUE, as_promise = FALSE, wait = FALSE, packages = NULL, focus_on_console = FALSE, ..., nested_ok = FALSE )
rs_exec( expr, name = "Untitled", quoted = FALSE, rs = TRUE, as_promise = FALSE, wait = FALSE, packages = NULL, focus_on_console = FALSE, ..., nested_ok = FALSE )
expr |
R expression |
name |
used by 'RStudio' as name of the job |
quoted |
is |
rs |
whether to use 'RStudio' by default |
as_promise |
whether to return as a |
wait |
whether to wait for the result. |
packages |
packages to load in the sub-sessions |
focus_on_console |
whether to return back to console after creating
jobs; useful when users want to focus on writing code; default is false.
This feature works with 'RStudio' ( |
... |
internally used |
nested_ok |
whether nested |
'RStudio' provides interfaces jobRunScript
to
schedule background jobs. However, this
functionality only applies using 'RStudio' IDE. When launching R from
other places such as terminals, the job scheduler usually result in
errors. In this case, the alternative is to call system command via
Rscript
The expression expr
will run a clean environment. Therefore R objects
created outside of the context will be inaccessible from within the child
environment, and packages except for base packages will not be loaded.
There is a small difference when running within and without 'RStudio'.
When running via Rscript
, the environment will run under
vanilla
argument, which means no load, no start-up code. If you
have start-up code stored at ~/.Rprofile
, the start-up code will be
ignored. When running within 'RStudio', the start-up code will be executed.
As of rstudioapi
version 0.11, there is no 'vanilla' option. This
feature is subject to change in the future.
If wait=TRUE
, returns evaluation results of expr
,
otherwise a function that can track the state of job.
if(interactive()){ h <- rs_exec( { Sys.sleep(2) print(Sys.getpid()) }, wait = FALSE, name = 'Test', focus_on_console = TRUE ) code <- h() print(code) # wait 3 seconds Sys.sleep(3) code <- h() attributes(code) }
if(interactive()){ h <- rs_exec( { Sys.sleep(2) print(Sys.getpid()) }, wait = FALSE, name = 'Test', focus_on_console = TRUE ) code <- h() print(code) # wait 3 seconds Sys.sleep(3) code <- h() attributes(code) }
Focus on coding; works with 'RStudio' (>=1.4
)
rs_focus_console(wait = 0.5)
rs_focus_console(wait = 0.5)
wait |
wait in seconds before sending command; if too soon, then 'RStudio' might not be able to react. |
None
Perform "safe" save-all action with backward
compatibility: check whether 'RStudio' is running and whether
rstudioapi
has function documentSaveAll
.
rs_save_all()
rs_save_all()
Use 'RStudio' to Select a Path on the Server
rs_select_path(is_directory = TRUE)
rs_select_path(is_directory = TRUE)
is_directory |
whether the path should be a directory |
Raise error if rs_avail
fails,
otherwise returns the selected path
Add self-hosted repository, such as 'drat', 'r-universe' to 'RStudio' preference. Please restart 'RStudio' to take changes into effect.
rs_set_repos(name, url, add = TRUE)
rs_set_repos(name, url, add = TRUE)
name |
repository name, must be unique and readable |
url |
the website address of the repository, starting with schemes
such as |
add |
whether to add to existing repository; default is true |
'RStudio' allows to add secondary 'CRAN'-like repository to its
preference, such that users can add on-going self-hosted developing
repositories (such as package 'drat'
, or 'r-universe'). These
repositories will be set automatically when running
install.packages
.
a list of settings.
Get 'RStudio' Viewer, or Return Default
rs_viewer( ..., default = TRUE, version_needed = "1.3", child_ok = FALSE, shiny_ok = FALSE )
rs_viewer( ..., default = TRUE, version_needed = "1.3", child_ok = FALSE, shiny_ok = FALSE )
... |
passed to |
default |
if |
version_needed , child_ok , shiny_ok
|
passed to |
If viewer
can be called and
'RStudio' is running, then launch 'RStudio' internal viewer.
Otherwise if default
is a function such as
browseURL
, then call the function with given
arguments. If default
is not a function, return default
Take a screenshot of the whole page and save encoded
DataURI
that can be accessed via input[[inputId]]
.
screenshot(inputId, session = shiny::getDefaultReactiveDomain())
screenshot(inputId, session = shiny::getDefaultReactiveDomain())
inputId |
the input id where the screenshot should be |
session |
shiny session |
None. However, the screenshot results can be accessed from shiny input
library(shiny) library(dipsaus) ui <- fluidPage( tagList( shiny::singleton(shiny::tags$head( shiny::tags$link(rel="stylesheet", type="text/css", href="dipsaus/dipsaus.css"), shiny::tags$script(src="dipsaus/dipsaus-dipterix-lib.js") )) ), actionButtonStyled('do', 'Take Screenshot'), compoundInput2('group', label = 'Group', components = list( textInput('txt', 'Enter something here') )) ) server <- function(input, output, session) { observeEvent(input$do, { screenshot('screeshot_result') }) observeEvent(input$screeshot_result, { showModal(modalDialog( tags$img(src = input$screeshot_result, width = '100%') )) }) } if(interactive()){ shinyApp(ui, server) }
library(shiny) library(dipsaus) ui <- fluidPage( tagList( shiny::singleton(shiny::tags$head( shiny::tags$link(rel="stylesheet", type="text/css", href="dipsaus/dipsaus.css"), shiny::tags$script(src="dipsaus/dipsaus-dipterix-lib.js") )) ), actionButtonStyled('do', 'Take Screenshot'), compoundInput2('group', label = 'Group', components = list( textInput('txt', 'Enter something here') )) ) server <- function(input, output, session) { observeEvent(input$do, { screenshot('screeshot_result') }) observeEvent(input$screeshot_result, { showModal(modalDialog( tags$img(src = input$screeshot_result, width = '100%') )) }) } if(interactive()){ shinyApp(ui, server) }
Provides Unique Session ID According to Current R Session
session_uuid(pid = Sys.getpid(), attributes = FALSE)
session_uuid(pid = Sys.getpid(), attributes = FALSE)
pid |
R session process ID, default is |
attributes |
whether to append data used to calculate ID as attributes, default is false |
Character string
Shiny ‘input’ object is read-only reactive list. When try to
assign values to input, errors usually occur. This method provides several
work-around to set values to input. Please use along with
use_shiny_dipsaus
.
set_shiny_input( session = shiny::getDefaultReactiveDomain(), inputId, value, priority = c("event", "deferred", "immediate"), method = c("proxy", "serialize", "value", "expression"), quoted = TRUE )
set_shiny_input( session = shiny::getDefaultReactiveDomain(), inputId, value, priority = c("event", "deferred", "immediate"), method = c("proxy", "serialize", "value", "expression"), quoted = TRUE )
session |
shiny session, see shiny |
inputId |
character, input ID |
value |
the value to assign |
priority |
characters, options are "event", "deferred", and "immediate". "event" and "immediate" are similar, they always fire changes. "deferred" fire signals to other reactive/observers only when the input value has been changed |
method |
characters, options are "proxy", "serialize", "value", "expression". "proxy" is recommended, other methods are experimental. |
quoted |
is value quoted? Only used when method is "expression" |
library(shiny) library(dipsaus) ui <- fluidPage( # Register widgets use_shiny_dipsaus(), actionButton('run', 'Set Input'), verbatimTextOutput('input_value') ) server <- function(input, output, session) { start = Sys.time() output$input_value <- renderPrint({ now <- input$key now %?<-% start cat('This app has been opened for ', difftime(now, start, units = 'sec'), ' seconds') }) observeEvent(input$run, { # setting input$key to Sys.time() set_shiny_input(session, 'key', Sys.time()) }) } if(interactive()){ shinyApp(ui, server) }
library(shiny) library(dipsaus) ui <- fluidPage( # Register widgets use_shiny_dipsaus(), actionButton('run', 'Set Input'), verbatimTextOutput('input_value') ) server <- function(input, output, session) { start = Sys.time() output$input_value <- renderPrint({ now <- input$key now %?<-% start cat('This app has been opened for ', difftime(now, start, units = 'sec'), ' seconds') }) observeEvent(input$run, { # setting input$key to Sys.time() set_shiny_input(session, 'key', Sys.time()) }) } if(interactive()){ shinyApp(ui, server) }
Get internal (C
) data types; See
https://cran.r-project.org/doc/manuals/r-release/R-ints.pdf Page 1
for more different SEXPTYPE
s.
sexp_type2(x) ## S3 method for class 'sexp_type2' as.character(x, ...) ## S3 method for class 'sexp_type2' print(x, ...)
sexp_type2(x) ## S3 method for class 'sexp_type2' as.character(x, ...) ## S3 method for class 'sexp_type2' print(x, ...)
x |
any R object |
... |
ignored |
An integer of class "sexp_type2"
# 1 vs 1L # Integer case sexp_type2(1L) # double sexp_type2(1) # Built-in function sexp_type2(`+`) # normal functions sexp_type2(sexp_type2) # symbols (quoted names) sexp_type2(quote(`+`)) # Calls (quoted expressions) sexp_type2(quote({`+`}))
# 1 vs 1L # Integer case sexp_type2(1L) # double sexp_type2(1) # Built-in function sexp_type2(`+`) # normal functions sexp_type2(sexp_type2) # symbols (quoted names) sexp_type2(quote(`+`)) # Calls (quoted expressions) sexp_type2(quote({`+`}))
Re-arrange arrays in parallel
shift_array(x, shift_idx, shift_by, shift_amount)
shift_array(x, shift_idx, shift_by, shift_amount)
x |
array, must have at least matrix |
shift_idx |
which index is to be shifted |
shift_by |
which dimension decides |
shift_amount |
shift amount along |
A simple use-case for this function is to think of a matrix where each row is a signal and columns stand for time. The objective is to align (time-lock) each signal according to certain events. For each signal, we want to shift the time points by certain amount.
In this case, the shift amount is defined by shift_amount
, whose
length equals to number of signals. shift_idx=2
as we want to shift
time points (column, the second dimension) for each signal. shift_by=1
because the shift amount is depend on the signal number.
x <- matrix(1:10, nrow = 2, byrow = TRUE) z <- shift_array(x, 2, 1, c(1,2)) y <- NA * x y[1,1:4] = x[1,2:5] y[2,1:3] = x[2,3:5] # Check if z ang y are the same z - y # array case # x is Trial x Frequency x Time x <- array(1:27, c(3,3,3)) # Shift time for each trial, amount is 1, -1, 0 shift_amount <- c(1,-1,0) z <- shift_array(x, 3, 1, shift_amount) if(interactive()){ par(mfrow = c(3, 2)) for( ii in 1:3 ){ image(t(x[ii, ,]), ylab = 'Frequency', xlab = 'Time', main = paste('Trial', ii)) image(t(z[ii, ,]), ylab = 'Frequency', xlab = 'Time', main = paste('Shifted amount:', shift_amount[ii])) } }
x <- matrix(1:10, nrow = 2, byrow = TRUE) z <- shift_array(x, 2, 1, c(1,2)) y <- NA * x y[1,1:4] = x[1,2:5] y[2,1:3] = x[2,3:5] # Check if z ang y are the same z - y # array case # x is Trial x Frequency x Time x <- array(1:27, c(3,3,3)) # Shift time for each trial, amount is 1, -1, 0 shift_amount <- c(1,-1,0) z <- shift_array(x, 3, 1, shift_amount) if(interactive()){ par(mfrow = c(3, 2)) for( ii in 1:3 ){ image(t(x[ii, ,]), ylab = 'Frequency', xlab = 'Time', main = paste('Trial', ii)) image(t(z[ii, ,]), ylab = 'Frequency', xlab = 'Time', main = paste('Shifted amount:', shift_amount[ii])) } }
Simple shiny alert that uses 'JavaScript' promises
shiny_alert2( title = "Alert", text = "", icon = c("info", "warning", "success", "error"), danger_mode = FALSE, auto_close = TRUE, buttons = NULL, on_close = NULL, session = shiny::getDefaultReactiveDomain() ) close_alert2()
shiny_alert2( title = "Alert", text = "", icon = c("info", "warning", "success", "error"), danger_mode = FALSE, auto_close = TRUE, buttons = NULL, on_close = NULL, session = shiny::getDefaultReactiveDomain() ) close_alert2()
title |
title of the alert |
text |
alert body text (pure text) |
icon |
which icon to display, choices are |
danger_mode |
true or false; if true, then the confirm button turns
red and the default focus is set on the cancel button instead. To enable
danger mode, |
auto_close |
whether to close automatically when clicking outside of the alert |
buttons |
logical value or a named list, or characters. If logical, it indicates whether buttons should be displayed or not; for named list, the names will be the button text, see example; for characters, the characters will be the button text and value |
on_close |
|
session |
shiny session, see |
a temporary input ID, currently not useful
library(shiny) library(dipsaus) ui <- fluidPage( use_shiny_dipsaus(), actionButtonStyled('btn', 'btn') ) server <- function(input, output, session) { observeEvent(input$btn, { shiny_alert2( on_close = function(value) { cat("Modal closed!\n") print(value) }, title = "Title", text = "message", icon = "success", auto_close = FALSE, buttons = list("cancel" = TRUE, "YES!" = list(value = 1)) ) }) } if(interactive()){ shinyApp(ui, server, options = list(launch.browser = TRUE)) }
library(shiny) library(dipsaus) ui <- fluidPage( use_shiny_dipsaus(), actionButtonStyled('btn', 'btn') ) server <- function(input, output, session) { observeEvent(input$btn, { shiny_alert2( on_close = function(value) { cat("Modal closed!\n") print(value) }, title = "Title", text = "message", icon = "success", auto_close = FALSE, buttons = list("cancel" = TRUE, "YES!" = list(value = 1)) ) }) } if(interactive()){ shinyApp(ui, server, options = list(launch.browser = TRUE)) }
Detect whether 'Shiny' is running
shiny_is_running()
shiny_is_running()
logical, true if current shiny context is active
Ported from 'rutabaga'
package, calculates standard error
of mean. The sample size is determined by number of none-NA
numbers
by default
ste_mean(x, na.rm = FALSE, na_as_zero = na.rm, ...) ## Default S3 method: ste_mean(x, na.rm = FALSE, na_as_zero = na.rm, ...)
ste_mean(x, na.rm = FALSE, na_as_zero = na.rm, ...) ## Default S3 method: ste_mean(x, na.rm = FALSE, na_as_zero = na.rm, ...)
x |
R object |
na.rm |
whether to remove |
na_as_zero |
whether convert |
... |
passed to other methods |
A numerical number that is the standard error of the mean
x <- rnorm(100) ste_mean(x) # internal implementation identical(ste_mean(x), sd(x) / sqrt(100))
x <- rnorm(100) ste_mean(x) # internal implementation identical(ste_mean(x), sd(x) / sqrt(100))
Calculate sum(x^2)
, but faster when the number of
elements exceeds 1000.
x |
double, integer, or logical vector/matrix |
A numerical scalar
x <- rnorm(10000) sumsquared(x) # Compare speed microbenchmark::microbenchmark( cpp = {sumsquared(x)}, r = {sum(x^2)} )
x <- rnorm(10000) sumsquared(x) # Compare speed microbenchmark::microbenchmark( cpp = {sumsquared(x)}, r = {sum(x^2)} )
Synchronize Shiny Inputs
sync_shiny_inputs( input, session, inputIds, uniform = rep("I", length(inputIds)), updates, snap = 250, ignoreNULL = TRUE, ignoreInit = FALSE )
sync_shiny_inputs( input, session, inputIds, uniform = rep("I", length(inputIds)), updates, snap = 250, ignoreNULL = TRUE, ignoreInit = FALSE )
input , session
|
shiny reactive objects |
inputIds |
input ids to be synchronized |
uniform |
functions, equaling to length of |
updates |
functions, equaling to length of |
snap |
numeric, milliseconds to defer the changes |
ignoreNULL , ignoreInit
|
passed to |
none.
library(shiny) ui <- fluidPage( textInput('a', 'a', value = 'a'), sliderInput('b', 'b', value = 1, min = 0, max = 1000) ) server <- function(input, output, session) { sync_shiny_inputs(input, session, inputIds = c('a', 'b'), uniform = list( function(a){as.numeric(a)}, 'I' ), updates = list( function(a){updateTextInput(session, 'a', value = a)}, function(b){updateSliderInput(session, 'b', value = b)} )) } if( interactive() ){ shinyApp(ui, server) }
library(shiny) ui <- fluidPage( textInput('a', 'a', value = 'a'), sliderInput('b', 'b', value = 1, min = 0, max = 1000) ) server <- function(input, output, session) { sync_shiny_inputs(input, session, inputIds = c('a', 'b'), uniform = list( function(a){as.numeric(a)}, 'I' ), updates = list( function(a){updateTextInput(session, 'a', value = a)}, function(b){updateSliderInput(session, 'b', value = b)} )) } if( interactive() ){ shinyApp(ui, server) }
Test whether function has certain arguments
test_farg(fun, arg, dots = TRUE)
test_farg(fun, arg, dots = TRUE)
fun |
function |
arg |
characters of function arguments |
dots |
whether |
a <- function(n = 1){} # Test whether `a` has argument called 'b' test_farg(a, 'b') # Test whether `a` has argument called 'b' and 'n' test_farg(a, c('b', 'n')) # `a` now has dots a <- function(n = 1, ...){} # 'b' could goes to dots and a(b=...) is still valid test_farg(a, 'b') # strict match, dots doesn't count test_farg(a, 'b', dots = FALSE)
a <- function(n = 1){} # Test whether `a` has argument called 'b' test_farg(a, 'b') # Test whether `a` has argument called 'b' and 'n' test_farg(a, c('b', 'n')) # `a` now has dots a <- function(n = 1, ...){} # 'b' could goes to dots and a(b=...) is still valid test_farg(a, 'b') # strict match, dots doesn't count test_farg(a, 'b', dots = FALSE)
Calculate time difference and return a number
time_delta(t1, t2, units = "secs")
time_delta(t1, t2, units = "secs")
t1 |
time start |
t2 |
time end |
units |
character, choices are |
numeric difference of time in units specified
a = Sys.time() Sys.sleep(0.3) b = Sys.time() time_delta(a, b) # In seconds, around 0.3 time_delta(a, b, 'mins') # in minutes, around 0.005
a = Sys.time() Sys.sleep(0.3) b = Sys.time() time_delta(a, b) # In seconds, around 0.3 time_delta(a, b, 'mins') # in minutes, around 0.005
Convert file to 'base64' format
to_datauri(file, mime = "")
to_datauri(file, mime = "")
file |
file path |
mime |
'mime' type, default is blank |
a 'base64' data string looks like 'data:;base64,AEF6986...'
Convert bytes to KB, MB, GB,...
to_ram_size(s, kb_to_b = 1000)
to_ram_size(s, kb_to_b = 1000)
s |
size |
kb_to_b |
how many bytes counts one KB, 1000 by default |
numeric equaling to s
but formatted
fastmap2
object to a new oneMigrate a fastmap2
object to a new one
update_fastmap2(from, to, override = TRUE)
update_fastmap2(from, to, override = TRUE)
from , to
|
|
override |
whether to override keys in |
Map to
Update styled action button
updateActionButtonStyled( session, inputId, label = NULL, icon = NULL, type = NULL, disabled = NULL, ... )
updateActionButtonStyled( session, inputId, label = NULL, icon = NULL, type = NULL, disabled = NULL, ... )
session , inputId , label , icon
|
passed to |
type |
button type to update |
disabled |
whether to disable the button |
... |
ignored |
none
actionButtonStyled
for how to define the button.
Update compound inputs
updateCompoundInput2( session, inputId, value = NULL, ncomp = NULL, initialization = NULL, ... )
updateCompoundInput2( session, inputId, value = NULL, ncomp = NULL, initialization = NULL, ... )
session |
shiny session or session proxy |
inputId |
character see |
value |
list of lists, see |
ncomp |
integer, non-negative number of groups to update, |
initialization , ...
|
named list of other updates |
none
compoundInput2
for how to define components.
## Not run: library(shiny); library(dipsaus) ## UI side compoundInput2( 'input_id', 'Group', div( textInput('text', 'Text Label'), sliderInput('sli', 'Slider Selector', value = 0, min = 1, max = 1) ), label_color = 1:10, value = list( list(text = '1'), # Set text first group to be "1" '', # no settings for second group list(sli = 0.2) # sli = 0.2 for the third group )) ## server side: updateCompoundInput2(session, 'inputid', # Change the first 3 groups value = lapply(1:3, function(ii){ list(sli = runif(1)) }), # Change text label for all groups initialization = list( text = list(label = as.character(Sys.time())) )) ## End(Not run)
## Not run: library(shiny); library(dipsaus) ## UI side compoundInput2( 'input_id', 'Group', div( textInput('text', 'Text Label'), sliderInput('sli', 'Slider Selector', value = 0, min = 1, max = 1) ), label_color = 1:10, value = list( list(text = '1'), # Set text first group to be "1" '', # no settings for second group list(sli = 0.2) # sli = 0.2 for the third group )) ## server side: updateCompoundInput2(session, 'inputid', # Change the first 3 groups value = lapply(1:3, function(ii){ list(sli = runif(1)) }), # Change text label for all groups initialization = list( text = list(label = as.character(Sys.time())) )) ## End(Not run)
This function must be called from a Shiny app's UI in order for some widgets to work.
use_shiny_dipsaus(x)
use_shiny_dipsaus(x)
x |
'HTML' tags |