Package 'spfda'

Title: Function-on-Scalar Regression with Group-Bridge Penalty
Description: Implements a group-bridge penalized function-on-scalar regression model proposed by Wang et al. (2020) <arXiv:2006.10163>, to simultaneously estimate functional coefficient and recover the local sparsity.
Authors: Zhengjia Wang [aut, cre] , Meng Li [aut]
Maintainer: Zhengjia Wang <[email protected]>
License: MIT + file LICENSE
Version: 0.9.1.9000
Built: 2024-11-24 03:09:17 UTC
Source: https://github.com/dipterix/spfda

Help Index


Ported function from 'refund' package

Description

A modified version of fosr.vs, but with groups parameter to allow grouping time points rather than the whole coefficient when the underlying functions are locally supported.

Usage

fosr_vs(
  formula,
  data,
  nbasis = 10,
  method = c("ls", "grLasso", "grMCP", "grSCAD"),
  epsilon = 1e-05,
  max.iter_num = 100,
  groups = NULL
)

Arguments

formula, data, nbasis, method, epsilon, max.iter_num

see fosr.vs

groups

integer vector with length of number of time-points of how time-points should be grouped; default is NULL, indicating there is no local sparsity.


Sparse Function-on-scalar Regression with Group Bridge Penalty

Description

Function-on-scalar regression model, denote \(n\) as total number of observations, \(p\) the number of coefficients, \(K\) as the number of B-splines, \(T\) as total time points.

Usage

spfda(
  Y,
  X,
  lambda,
  time = seq(0, 1, length.out = ncol(Y)),
  nsp = "auto",
  ord = 4,
  alpha = 0.5,
  W = NULL,
  init = NULL,
  max_iter = 50,
  inner_iter = 50,
  CI = FALSE,
  ...
)

Arguments

Y

Numeric \(n \times T\) matrix, response function.

X

Numeric \(n \times p\) matrix, design matrix

lambda

Regularization parameter \(\gamma\)

time

Time domain, numerical length of \(T\)

nsp

Integer or 'auto', number of B-splines \(K\); default is 'auto'

ord

B-spline order, default is 4; must be \(\geq 3\)

alpha

Bridge parameter \(\alpha\), default is 0.5

W

A \(T \times T\) weight matrix or NULL (identity matrix); default is NULL

init

Initial \(\gamma\); default is NULL

max_iter

Number of outer iterations

inner_iter

Number of \(ADMM\) iterations (inner steps)

CI

Logical, whether to calculate theoretical confidence intervals

...

Ignored

Details

This function implements "Functional Group Bridge for Simultaneous Regression and Support Estimation" (https://arxiv.org/abs/2006.10163). The model estimates functional coefficients \(\beta(t)\) under model \[y(t) = X\beta(t) + \epsilon(t)\] with B-spline basis expansion \[\beta(t) = \gamma B(t) + R(t), \] where \( R(t) \) is B-spline approximation error. The objective function \[ \left\| (Y-X\gamma B)W \right\|_{2}^{2} + \sum_{j,m} \left\| \gamma_{j}^{T}\mathbf{1}(B^{t} > 0) \right\|_{1}^{\alpha}. \] The input response variable is a matrix. If \(y_{i}(t)\) are observed at different time points, please interpolate (e.g. kernel) before feeding in.

Value

A spfda.model object (environment) with following elements:

B

B-spline basis functions used

error

Root Mean Square Error ('RMSE')

CI

Whether confidence intervals are calculated

gamma

B-spline coefficient \(\gamma_{p \times K}\)

generate_splines

Function to generate B-splines given time points

K

Number of B-spline basis functions

knots

B-spline knots used to fit the model

predict

Function to predict responses \(\beta(t)\) given new X and/or time points

raw

A list of raw variables

Examples

dat <- spfda_simulate()
x <- dat$X
y <- dat$Y

fit <- spfda(y, x, lambda = 5, CI = TRUE)

BIC(fit)

plot(fit, col = c("orange", "dodgerblue3", "darkgreen"),
     main = "Fitted with 95% CI", aty = c(0, 0.5, 1), atx = c(0,0.2,0.8,1))
matpoints(fit$time, t(dat$env$beta), type = 'l', col = 'black', lty = 2)
legend('topleft', c("Fitted", "Underlying"), lty = c(1,2))

print(fit)
coefficients(fit)

Generates toy example data

Description

Synthesized functional signals with heterogeneous error. The underlying three coefficients correspond to 'dense', 'global sparse', and 'local sparse' functions. See https://arxiv.org/abs/2006.10163 for detailed configurations.

Usage

spfda_simulate(n = 1000, n_timepoints = 100, err = 1, scale = c(1, 1, 1))

Arguments

n

Total number of observations

n_timepoints

Total number of time points

err

Error magnitude

scale

the scale of coefficients length of 1 or 3.

Value

A list of data generated: X is scalar predictor, Y is functional response.


Calculates weight matrices

Description

Calculates weight matrices

Usage

spfda_weight(X, Y, bandwidth, part)

Arguments

X

design matrix

Y

response matrix

bandwidth

numeric band-width

part

list of time point boundaries

Value

the weight matrix